-
Notifications
You must be signed in to change notification settings - Fork 82
/
pretraining.py
716 lines (596 loc) · 28.6 KB
/
pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
# Copyright (c) 2023 Graphcore Ltd. All rights reserved.
import logging
import time
import numpy as np
from typing import Dict, Union, Type, Optional
import popdist
import popxl
from popxl import ops, gcg
import popxl_addons as addons
from pretraining_config import (
RTS_THRESHOLD,
RTS_ACTIVATIONS_THRESHOLD,
USE_IO_TILES,
GraphConf,
PhaseConf,
gen_layer_config,
filter,
RTS_ACT,
)
from popxl_addons.optimizers.adam import AdamOptimizerStep
from popxl_addons import TaskSession
from popxl_addons.utils import OrderedDict, timer
from popxl_addons.patterns import apply_pre_alias_patterns
from popxl_addons.graph import GraphWithNamedArgs
from popxl_addons.variable_factory import NamedVariableFactories
from popxl_addons.named_replica_grouping import NamedReplicaGrouping
from popxl_addons.named_tensors import NamedTensors
from popxl_addons.transforms.repeat_graph import repeat_graph
from popxl_addons.transforms.batch_serialisation import (
batch_serialise_fwd_and_grad,
batch_serial_buffer,
batch_serialise,
RemoteHandle,
)
from popxl_addons.rts import (
all_gather_replica_sharded_graph,
replica_sharded_spec,
reduce_replica_sharded_graph,
reduce_replica_sharded_tensor,
)
from popxl_addons.remote import (
named_variable_buffers,
load_remote_graph,
store_remote_graph,
create_remote_buffer,
NamedRemoteBuffers,
)
from popxl_addons.ops.grad_reduce_square_add import grad_reduce_square_add
from config import GPTConfig, CONFIG_DIR
from utils.setup import gpt_config_setup
from modelling.embedding import GPTEmbeddingsTP, generate_positions
from modelling.decoder import GPTDecoderBlockTP
from modelling.gpt_lm import GPTLMHeadLossTP, HeadFwdBwdTiedEmb
from utils.utils import replica_groups
__all__ = ["pretraining"]
OptimGraphs = Dict[str, GraphWithNamedArgs]
def get_activ_shard_group(a: popxl.Tensor, shard_group: popxl.ReplicaGrouping, RTS_ACTIVATIONS_THRESHOLD: int):
return shard_group if a.nelms >= RTS_ACTIVATIONS_THRESHOLD else popxl.gcg().ir.replica_grouping(group_size=1)
def get_rts_groups(facts: NamedVariableFactories) -> NamedReplicaGrouping:
ir = popxl.gcg().ir
rts_groups = {}
for k, f in facts.to_dict().items():
size = np.prod(f.shape)
rg = f.replica_grouping.const_rg
if size % rg.group_size == 0 and size >= RTS_THRESHOLD:
rts_groups[k] = rg
else:
rts_groups[k] = ir.replica_grouping(group_size=1)
return NamedReplicaGrouping.from_dict(rts_groups)
def requires_weight_decay(t: popxl.Tensor):
return not any(map(lambda exclude: exclude in t.name, ["norm", "bias"]))
def optimizer_graphs(
config: GPTConfig, optimizer: addons.Module, variables: NamedTensors, facts: NamedVariableFactories
):
optim_facts = {}
optim_graphs = {}
replica_groups = facts.replica_groupings.to_dict()
rts_groups = get_rts_groups(facts)
for name, var in variables.to_dict().items():
input_spec = replica_sharded_spec(var, shard_over=rts_groups[name])
replica_group = replica_groups[name].const_rg
optim_facts[name], optim_graphs[name] = optimizer.create_graph(
input_spec,
input_spec,
lr=popxl.TensorSpec((), popxl.float32),
replica_grouping=replica_group,
weight_decay=config.training.optimizer.weight_decay if requires_weight_decay(var) else 0.0,
beta1=config.training.optimizer.beta1,
beta2=config.training.optimizer.beta2,
eps=1e-6,
bias_correction=True,
first_order_dtype=popxl.float32,
loss_scaling=config.execution.loss_scaling,
global_norm=popxl.TensorSpec((), popxl.float32),
global_norm_max=config.training.optimizer.gradient_clipping,
)
return NamedVariableFactories.from_dict(optim_facts), optim_graphs
class Graphs:
def __init__(
self,
config: GPTConfig,
layer_configs,
optimizer: addons.Module,
Layer: Type[addons.Module],
entries: int,
reuse_buffers: Optional[Dict] = None,
*args,
**kwargs,
):
self.config = config
self.Layer = Layer
_, rg_dp = replica_groups(config)
self.layer_config = layer_configs[Layer]
graph_settings: GraphConf = self.layer_config.graph_config
# Create Graphs for computing forward, gradient and optimizer
fwd_facts, self.fwd = Layer(config).create_graph(*args, **kwargs)
# Autodiff
# self.fwd.args only include named tensors/variables
tensors_to_accum = filter(self.fwd.args, graph_settings.accumulate)
grads_provided = filter(self.fwd.graph.outputs, graph_settings.grads_provided)
grads_required = filter(self.fwd.graph.inputs, graph_settings.grads_required)
called_graphs_grad_info = {}
if config.execution.attention_serialisation > 1 and Layer == GPTDecoderBlockTP:
# Optimisation to recompute each blk separately
assert len(self.fwd.graph.called_graphs) == 1, "expected exactly 1 called graph by decoder layer fwd"
blk_graph = GraphWithNamedArgs(self.fwd.graph.called_graphs[0])
grad_blk_graph = addons.transforms.autodiff(blk_graph, grads_required=blk_graph.graph.inputs[:-2])
grad_blk_graph = addons.transforms.recompute_graph(grad_blk_graph)
called_graphs_grad_info[blk_graph.graph] = grad_blk_graph.grad_graph_info
grad_facts, self.bwd = addons.autodiff_with_accumulation(
self.fwd,
tensors_to_accum.values_flat(),
grads_provided=grads_provided,
grads_required=grads_required,
replica_groupings=fwd_facts.replica_groupings,
called_graphs_grad_info=called_graphs_grad_info,
)
popxl.transforms.decompose_sum(self.bwd.graph)
reuse_rg = {}
if graph_settings.reuse:
assert len(graph_settings.reuse) == len(reuse_buffers)
for var_name in graph_settings.reuse:
assert var_name in reuse_buffers, f"{var_name} not in {reuse_buffers}"
grad_facts.accum.pop(var_name)
tensors_to_accum.pop(var_name)
fwd_fact = fwd_facts.pop(var_name)
reuse_rg[var_name] = fwd_fact.replica_grouping
# Optimiser
optim_facts, self.optim = optimizer_graphs(config, optimizer, tensors_to_accum, fwd_facts)
# Variables required
self.facts = NamedVariableFactories(fwd=fwd_facts, optim=optim_facts)
self.grad_facts = grad_facts
remote_buffer_facts = NamedVariableFactories()
if graph_settings.remote_buffer_fwd:
remote_buffer_facts.insert("fwd", fwd_facts.copy())
if graph_settings.remote_buffer_bwd:
remote_buffer_facts.insert("bwd", grad_facts.copy())
remote_buffer_facts.bwd.pop("mean_accum_counter")
if graph_settings.remote_buffer_optim:
remote_buffer_facts.insert("optim", optim_facts.copy())
rts_groups = get_rts_groups(remote_buffer_facts)
shard_over = {k: rg.group_size for k, rg in rts_groups.to_dict().items()}
self.buffers = named_variable_buffers(remote_buffer_facts, shard_over_dict=shard_over)
self.remote_buffer_facts = remote_buffer_facts
### Create Graphs for loading/gathering/storing/reducing remote buffers
# Store fwd and optim
self._optim_fwd_store = store_remote_graph(self.buffers.filter_keys(["fwd", "optim"]), entries)
# Store bwd
if "bwd" in self.buffers:
self._grad_store = store_remote_graph(self.buffers.bwd, entries)
# Load fwd
if "fwd" in self.buffers:
fwd_buffers: NamedRemoteBuffers = self.buffers.fwd.copy()
if graph_settings.reuse:
for var_name in graph_settings.reuse:
fwd_buffers.insert(var_name, reuse_buffers[var_name], overwrite=True)
rts_groups.fwd.insert(var_name, reuse_rg[var_name], overwrite=True)
self._fwd_load, self._fwd_load_names = load_remote_graph(fwd_buffers, entries)
# Load optim + fwd
self._optim_fwd_load, self._optim_fwd_load_names = load_remote_graph(self.buffers, entries)
self._fwd_all_gather, self._fwd_all_gather_names = all_gather_replica_sharded_graph(
NamedTensors.pack(self._fwd_load_names, self._fwd_load.graph.outputs),
replica_groups=rts_groups.fwd,
use_io_tiles=USE_IO_TILES,
)
# RTS graph: reduce
grad_accums = self.bwd.args.copy()
grad_accums.pop("mean_accum_counter")
if graph_settings.reuse:
for var_name in graph_settings.reuse:
grad_accums.accum.pop(var_name)
rts_bwd_group = NamedReplicaGrouping(accum=rts_groups.fwd.copy())
self._grad_reduce, self._grad_reduce_names = reduce_replica_sharded_graph(
grad_accums, "mean", shard_groups=rts_bwd_group, replica_group=rg_dp, use_io_tiles=USE_IO_TILES
)
def fwd_load(self, i: Union[int, popxl.Tensor]):
return NamedTensors.pack(self._fwd_load_names, self._fwd_load.call(i))
def grad_store(self, args: NamedTensors, i: Union[float, popxl.Tensor]):
return self._grad_store.bind(args).call(i)
def optim_fwd_load(self, i: Union[int, popxl.Tensor]):
return NamedTensors.pack(self._optim_fwd_load_names, self._optim_fwd_load.call(i))
def optim_fwd_store(self, args: NamedTensors, i: Union[int, popxl.Tensor]):
return self._optim_fwd_store.bind(args).call(i)
def fwd_all_gather(self, args: NamedTensors):
return NamedTensors.pack(self._fwd_all_gather_names, self._fwd_all_gather.bind(args).call())
def grad_reduce(self, args: NamedTensors):
return NamedTensors.pack(self._grad_reduce_names, self._grad_reduce.bind(args).call())
def batch_serialise_layer(
graphs: Graphs,
input_streams: addons.InputStreams,
output_streams: addons.OutputStreams,
buffers: Dict[str, popxl.RemoteBuffer],
shard_group: Optional[popxl.ReplicaGrouping],
):
config = graphs.config
phase_config: PhaseConf = graphs.layer_config.phase_config
shard_groups = {
name: shard_group if buffer.meta_shape else gcg().ir.replica_grouping(group_size=1)
for name, buffer in buffers.items()
}
load_handles = {}
store_streams = {}
store_buffers = {}
seed_input = None
for io in ("fwd_inputs", "bwd_inputs", "fwd_outputs", "bwd_outputs"):
if io == "fwd_inputs":
graph_tensors = OrderedDict([(t.name, t) for t in graphs.fwd.graph.inputs])
conf = phase_config.fwd_inputs
elif io == "bwd_inputs":
graph_tensors = OrderedDict([(t.name, t) for t in graphs.bwd.graph.inputs])
conf = phase_config.bwd_inputs
elif io == "fwd_outputs":
graph_tensors = OrderedDict([(t.name, t) for t in graphs.fwd.graph.outputs])
conf = phase_config.fwd_outputs
elif io == "bwd_outputs":
graph_tensors = OrderedDict([(t.name, t) for t in graphs.bwd.graph.outputs])
conf = phase_config.bwd_outputs
for name_or_idx, handle in conf.items():
if isinstance(name_or_idx, str):
t = graph_tensors[name_or_idx]
else:
t = graph_tensors.idx(name_or_idx)
if handle.type == "stream":
if "inputs" in io:
stream = input_streams[handle.name]
load_handles[t] = stream
else:
stream = output_streams[handle.name]
store_streams[t] = stream
elif handle.type == "seed":
assert seed_input is None and "inputs" in io
seed_input = t
elif handle.type == "buffer":
buffer = buffers[handle.name]
shard_group = shard_groups[handle.name] if handle.rts else None
remote = RemoteHandle(buffer, handle.row_offset, shard_group)
if "inputs" in io:
load_handles[t] = remote
else:
store_buffers[t] = remote
else:
raise Exception("unknown type")
if not phase_config.fwd_only:
fwd, bwd = batch_serialise_fwd_and_grad(
graphs.fwd,
graphs.bwd,
graphs.fwd.args,
config.gradient_accumulation,
load_handles=load_handles,
store_streams=store_streams,
store_buffers=store_buffers,
seed_input=seed_input,
rows=phase_config.rows,
io_mode="io",
)
graphs.fwd = fwd.graph
graphs.bwd = bwd.graph
else:
fwd = batch_serialise(
graphs.fwd,
config.gradient_accumulation,
load_handles=load_handles,
store_streams=store_streams,
store_buffers=store_buffers,
seed_input=seed_input,
rows=phase_config.rows,
io_mode="io",
)
graphs.fwd = fwd.graph
def optimizer_step(optim_graphs: OptimGraphs, ts: NamedTensors, lr: popxl.Tensor, global_norm: popxl.Tensor):
_variables = ts.fwd.to_dict()
_state = ts.optim
_grads = ts.bwd.accum.to_dict()
for name, graph in optim_graphs.items():
graph.bind(_state[name]).call(_variables[name], _grads[name], lr, global_norm)
def task_head_optimizer_step(optim_graphs: OptimGraphs, ts: NamedTensors, lr: popxl.Tensor, global_norm: popxl.Tensor):
_variables = ts.fwd.to_dict()
_state = ts.optim
_grads = {name.replace("accum.", ""): t for name, t in ts.bwd.to_dict().items()}
for name, graph in optim_graphs.items():
graph.bind(_state.get(name)).call(_variables[name], _grads[name], lr, global_norm)
def global_norm_reduce(config: GPTConfig, grad_norm: popxl.Tensor, grads: NamedTensors):
for g in grads.tensors:
ops.add_(grad_norm, grad_reduce_square_add(g, config.execution.loss_scaling))
def pretraining(config: GPTConfig) -> TaskSession:
replicas = config.execution.data_parallel * config.execution.tensor_parallel
ir = popxl.Ir(replication="popdist" if popdist.isPopdistEnvSet() else replicas)
assert ir.replication_factor == replicas
layer_config = gen_layer_config(config)
# Options
opts = ir._pb_ir.getSessionOptions()
opts.numIOTiles = config.execution.io_tiles
opts.enableStochasticRounding = config.training.stochastic_rounding
opts.partialsTypeMatMuls = "half"
opts.engineOptions["target.syncReplicasIndependently"] = "true"
main = ir.main_graph
with timer("PopXL IR construction"):
with main:
rg_tp, rg_dp = replica_groups(config)
rg_rts_activations = rg_tp
# ----- Define input and output streams -----
input_shape = (config.execution.micro_batch_size * config.model.sequence_length,)
input_streams = addons.InputStreams(
words=(input_shape, popxl.int32), labels=(input_shape, popxl.int32), lr=((), popxl.float32)
)
output_streams = addons.OutputStreams(loss=((), config.model.dtype), grad_norm=((), popxl.float32))
positions = popxl.constant(generate_positions(config), popxl.int32, name="positions")
# ---- Initialise Random Seed ----
# Same seed for tp1 group. Different across tp2+dp groups
seed_v, seed = addons.seed_variable(config.model.seed, replica_grouping=rg_tp)
# ----- Build compute graphs -----
optimizer = AdamOptimizerStep()
embeddings = Graphs(
config,
layer_config,
optimizer,
GPTEmbeddingsTP,
1,
None,
input_streams.words.spec,
positions.spec,
seed=seed.spec,
)
x_spec = embeddings.fwd.graph.outputs[0]
decoder_block = Graphs(
config, layer_config, optimizer, GPTDecoderBlockTP, config.model.layers, None, x_spec, seed=seed.spec
)
tied_weight_spec = embeddings.fwd.args.word.weight
head = Graphs(
config,
layer_config,
optimizer,
GPTLMHeadLossTP,
1,
{"lm_head.word_embedding": embeddings.buffers.fwd.word.weight},
x_spec,
input_streams.labels.spec,
)
# Make Head a single Fwd+Bwd layer to improve phase efficiency
_, head.fwd = HeadFwdBwdTiedEmb(config, head.fwd, head.bwd, head.facts.fwd, head.grad_facts).create_graph(
x_spec, input_streams.labels.spec, tied_weight_spec, tied_weight_spec
)
# ---- Transform graphs ----
# Recomputation
embeddings.bwd = addons.recompute_graph(embeddings.bwd)
decoder_block.bwd = addons.recompute_graph(decoder_block.bwd)
# Batch Serialisation
# Buffers
act_shard_group = (
get_activ_shard_group(x_spec, rg_rts_activations, RTS_ACTIVATIONS_THRESHOLD) if RTS_ACT else None
)
x_buffer = batch_serial_buffer(
embeddings.fwd.graph.outputs[0],
steps=config.gradient_accumulation,
rows=config.model.layers + 1,
shard_group=act_shard_group,
)
dx_buffer = batch_serial_buffer(
embeddings.bwd.graph.inputs[0],
steps=config.gradient_accumulation,
rows=config.model.layers + 1,
shard_group=act_shard_group,
)
buffers = {"x": x_buffer, "dx": dx_buffer}
# Graphs
batch_serialise_layer(embeddings, input_streams, output_streams, buffers, act_shard_group)
batch_serialise_layer(decoder_block, input_streams, output_streams, buffers, act_shard_group)
batch_serialise_layer(head, input_streams, output_streams, buffers, act_shard_group)
# Available Memory Proportion
addons.set_available_memory_proportion_by_ipu(ir, config.execution.available_memory_proportion)
# ----- Create Variables -----
# Structure should match gpt_lm.GPTLMHeadModelTP.hf_mapping
variables = NamedTensors(random_seed=seed_v)
transformer = NamedTensors()
variables.insert("transformer", transformer)
transformer.insert(
"embeddings",
embeddings.remote_buffer_facts.init_remote(
embeddings.buffers,
0,
"embeddings",
),
)
transformer.insert(
"decoder",
NamedTensors.from_dict(
{
n: decoder_block.facts.init_remote(
decoder_block.buffers,
n,
f"decoder.{n}",
)
for n in range(config.model.layers)
}
),
)
variables.insert(
"head",
head.facts.init_remote(
head.buffers,
0,
"head",
),
)
# ---- Execute ----
with popxl.in_sequence():
# Load current learning rate
lr = ops.host_load(input_streams.lr)
# Increment random seed
seed += 1
def embedding_fwd_phase(seed: popxl.Tensor, positions: popxl.Tensor):
# Load Embedding layer
embeddings_vars = embeddings.fwd_load(0)
embeddings_vars = embeddings.fwd_all_gather(embeddings_vars)
# Forward
seed, embed_seed = ops.split_random_seed(seed)
embeddings.fwd.bind(embeddings_vars).call(0, embed_seed, positions)
return seed
embed_fwd_graph = ir.create_graph(embedding_fwd_phase, seed, positions)
(seed,) = ops.call(embed_fwd_graph, seed, positions)
def single_decoder_block_fwd_phase(n: popxl.Tensor, seed: popxl.Tensor):
# Load decoder block
layer_vars = decoder_block.fwd_load(n)
layer_vars = decoder_block.fwd_all_gather(layer_vars)
# Forward
seed, layer_seed = ops.split_random_seed(seed)
decoder_block.fwd.bind(layer_vars).call(n, layer_seed)
return n + 1, seed
i = popxl.constant(0, name="layer_index")
fwd_graph = ir.create_graph(single_decoder_block_fwd_phase, i, seed)
ops.repeat(fwd_graph, config.model.layers, i, seed)
# Buffer to be used later
tied_weight_grad_buffer = None
def task_head_fwd_grad_phase():
nonlocal tied_weight_grad_buffer
# Load task head layer
head_vars = NamedTensors(fwd=head.fwd_all_gather(head.fwd_load(0)), bwd=head.grad_facts.init_zero())
# Tied weight
tied_weight = head_vars.fwd.lm_head.pop("word_embedding")
tied_weight_grad = ops.init(tied_weight.shape, tied_weight.dtype, "word_embedding_grad", "zero")
# Forward + Gradient
head.fwd.bind(head_vars).call(0, tied_weight, tied_weight_grad)
# Data parallel reduce
reduced_grads = head.grad_reduce(head_vars.bwd)
# Global Norm calculation
grad_norm = ops.init((), popxl.float32, name="grad_norm", init_type="zero")
global_norm_reduce(config, grad_norm, reduced_grads)
# Store Gradients
head.grad_store(reduced_grads, 0)
# Reduce and Store the tied gradient
grad_t = reduce_replica_sharded_tensor(
tied_weight_grad, "mean", replica_group=rg_dp, shard_group=rg_dp
)
tied_weight_grad_buffer = create_remote_buffer(
grad_t.spec, replica_group=rg_dp, shard_over=rg_dp.group_size
)
ops.remote_store(tied_weight_grad_buffer, 0, grad_t)
return grad_norm
task_graph = ir.create_graph(task_head_fwd_grad_phase)
(grad_norm,) = ops.call(task_graph)
def single_decoder_block_grad_phase(n: popxl.Tensor, grad_norm: popxl.TensorByRef):
# Load layer
layer_vars = decoder_block.fwd_load(n)
layer_vars = decoder_block.fwd_all_gather(layer_vars)
# Gradient
grads = decoder_block.grad_facts.init_zero()
bwd_vars = grads.copy()
bwd_vars.update(layer_vars)
decoder_block.bwd.bind(bwd_vars).call(n)
# Data parallel reduce
reduced_grads = decoder_block.grad_reduce(grads)
# Global Norm calculation
global_norm_reduce(config, grad_norm, reduced_grads)
# Store gradient
decoder_block.grad_store(reduced_grads, n)
return n - 1
i = popxl.constant(config.model.layers - 1, name="layer_index")
bwd_graph = ir.create_graph(single_decoder_block_grad_phase, i, grad_norm)
ops.repeat(bwd_graph, config.model.layers, i, grad_norm)
def embedding_grad_optimizer_phase(lr: popxl.Tensor, grad_norm: popxl.TensorByRef):
nonlocal tied_weight_grad_buffer
# Load Embeddings layer
embeddings_vars = embeddings.optim_fwd_load(0)
embeddings_fwd_vars = embeddings.fwd_all_gather(embeddings_vars.fwd)
# Gradient
grads = embeddings.grad_facts.init_zero()
bwd_vars = grads.copy()
bwd_vars.update(embeddings_fwd_vars)
embeddings.bwd.bind(bwd_vars).call(0)
# Data parallel reduce
reduced_grads = embeddings.grad_reduce(grads)
# Add the tied gradient from the projection
tied_weight_grad = ops.remote_load(tied_weight_grad_buffer, 0)
ops.add_(reduced_grads.accum.word.weight, tied_weight_grad)
# Global Norm calculation
global_norm_reduce(config, grad_norm, reduced_grads)
# Finalise global bwd norm with an all reduce and sqrt
grad_norm = ops.sqrt(ops.collectives.replicated_all_reduce(grad_norm, op="add"))
ops.host_store(output_streams.grad_norm, grad_norm)
# Optimizer Step for Embeddings.
# Note: No need to store then load the gradient.. just use it directly
embeddings_vars.insert("bwd", reduced_grads)
optimizer_step(embeddings.optim, embeddings_vars, lr, grad_norm)
# Store
embeddings.optim_fwd_store(embeddings_vars, 0)
return grad_norm
embed_bwd_graph = ir.create_graph(embedding_grad_optimizer_phase, lr, grad_norm)
(grad_norm,) = ops.call(embed_bwd_graph, lr, grad_norm)
# Optimizer Step for Layers
def layer_optim(n: popxl.Tensor, lr: popxl.Tensor, grad_norm: popxl.Tensor):
layer_vars = decoder_block.optim_fwd_load(n)
optimizer_step(decoder_block.optim, layer_vars, lr, grad_norm)
decoder_block.optim_fwd_store(layer_vars, n)
return n + 1
i = popxl.constant(0, name="layer_index")
layer_optim_graph = ir.create_graph(layer_optim, i, lr, grad_norm)
ops.repeat(layer_optim_graph, config.model.layers, i, lr, grad_norm)
def head_optim(lr: popxl.Tensor, grad_norm: popxl.Tensor):
# Optimizer Step for Task Head - Only layer norm, tied weights handled by embedding
head_vars = head.optim_fwd_load(0)
task_head_optimizer_step(head.optim, head_vars, lr, grad_norm)
# Store
head.optim_fwd_store(head_vars, 0)
head_optim_graph = ir.create_graph(head_optim, lr, grad_norm)
ops.call(head_optim_graph, lr, grad_norm)
# Run `OpToIdentityPattern` among others part of `PreAliasPatterns`
apply_pre_alias_patterns(ir, level="default")
repeat_graph(main, config.execution.device_iterations)
fwd_vars = NamedTensors.from_dict(
{
"transformer.embeddings": variables.transformer.embeddings.fwd,
"transformer.decoder": NamedTensors.from_dict(
{i: variables.transformer.decoder[i].fwd for i in range(config.model.layers)}
),
"head": variables.head.fwd,
}
)
ir.num_host_transfers = config.execution.device_iterations * config.gradient_accumulation
session = TaskSession(
input_streams,
output_streams,
fwd_vars,
ir=ir,
device_desc="ipu_hw",
)
return session
def main():
"""Run a benchmark configuration"""
config, _, _ = gpt_config_setup(
CONFIG_DIR / "pretraining.yml", "release", "tiny", wandb_setup=False, hf_model_setup=False
)
session = pretraining(config)
inputs = {
stream: np.ones(session._full_input_shape(stream.shape), stream.dtype.as_numpy())
for stream in session.expected_inputs()
}
with session:
# Skip one result
session.run(inputs)
durations = []
for i in range(5):
start = time.perf_counter()
outputs = session.run(inputs)
loss = outputs[session.outputs[0]].mean()
durations.append(time.perf_counter() - start)
logging.info(f"Step {i}. Loss {loss:.2f}")
duration = np.mean(durations)
samples_per_step = config.execution.device_iterations * config.training.global_batch_size
result_str = f"Duration: {duration} s " f"Throughput: {samples_per_step/duration:6.1f} samples/s "
logging.info(result_str)
if __name__ == "__main__":
try:
main()
except Exception as e:
logging.exception(e, exc_info=False) # Log time of exception
raise