forked from SuyashLakhotia/TextCategorization
-
Notifications
You must be signed in to change notification settings - Fork 2
/
cnn_fchollet.py
107 lines (88 loc) · 5.22 KB
/
cnn_fchollet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import tensorflow as tf
class FCholletCNN(object):
"""
A CNN architecture for text classification. Composed of an embedding layer followed by convolutional +
max-pooling layer(s), fully-connected layer(s) and a softmax layer.
Blog Post: https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
Code: Adapted from https://github.com/keras-team/keras/blob/master/examples/pretrained_word_embeddings.py
"""
def __init__(self, sequence_length, num_classes, vocab_size, embedding_size, embeddings, filter_widths,
num_features, pooling_sizes, fc_layers, l2_reg_lambda):
# Sanity checks
assert len(filter_widths) == len(num_features) == len(pooling_sizes)
# Placeholders for input, output and dropout
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
self.input_y = tf.placeholder(tf.int32, [None], name="input_y")
self.train_flag = tf.placeholder(tf.bool, name="train_flag")
self.dropout_keep_prob = tf.placeholder_with_default(1.0, shape=[], name="dropout_keep_prob")
# Keeping track of L2 regularization loss
l2_loss = tf.constant(0.0)
# Embedding layer
with tf.variable_scope("embedding"):
if embeddings is None:
embedding_mat = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
name="embeddings")
else:
embedding_mat = tf.Variable(embeddings, name="embeddings")
embedded_x = tf.nn.embedding_lookup(embedding_mat, self.input_x)
embedded_x = tf.cast(embedded_x, tf.float32)
self.x = embedded_x
# Convolution + max-pool layer for each filter size
for i in range(len(filter_widths)):
with tf.variable_scope("conv-maxpool-{}".format(i)):
with tf.variable_scope("conv-{}-{}".format(filter_widths[i], num_features[i])):
if i == 0:
in_channels = embedding_size
else:
in_channels = num_features[i - 1]
filter_shape = [filter_widths[i], in_channels, num_features[i]]
# Convolution layer
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
self.x = tf.nn.conv1d(value=self.x,
filters=W,
stride=1,
padding="VALID",
name="conv")
# Add bias & apply non-linearity
b = tf.Variable(tf.constant(0.1, shape=[num_features[i]]), name="b")
self.x = tf.nn.relu(tf.nn.bias_add(self.x, b), name="relu")
with tf.variable_scope("maxpool-{}".format(pooling_sizes[i])):
# Max-pooling over the outputs
self.x = tf.nn.pool(input=self.x,
window_shape=[pooling_sizes[i]],
strides=[pooling_sizes[i]],
pooling_type="MAX",
padding="VALID",
name="pool")
# Global max pooling
with tf.variable_scope("global-maxpool"):
self.x = tf.reduce_max(self.x, axis=1)
# Fully-connected layers, if any
for i, num_units in enumerate(fc_layers):
with tf.variable_scope("fc-{}-{}".format(i, num_units)):
W = tf.get_variable("W",
shape=[self.x.get_shape().as_list()[1], num_units],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_units]), name="b")
l2_loss += tf.nn.l2_loss(W)
self.x = tf.nn.xw_plus_b(self.x, W, b)
self.x = tf.nn.relu(self.x)
self.x = tf.nn.dropout(self.x, self.dropout_keep_prob)
# Final (unnormalized) scores and predictions
with tf.variable_scope("output"):
W = tf.get_variable("W",
shape=[self.x.get_shape().as_list()[1], num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
self.scores = tf.nn.xw_plus_b(self.x, W, b, name="scores")
self.predictions = tf.argmax(self.scores, 1, name="predictions")
self.predictions = tf.cast(self.predictions, tf.int32)
# Calculate mean cross-entropy loss
with tf.variable_scope("loss"):
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y)
self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
# Calculate accuracy
with tf.variable_scope("accuracy"):
correct_predictions = tf.equal(self.predictions, self.input_y)
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")