-
Notifications
You must be signed in to change notification settings - Fork 29
/
prime.py
139 lines (111 loc) · 3.87 KB
/
prime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# NOTICE!!! This is copied from https://stackoverflow.com/questions/4643647/fast-prime-factorization-module
import random
def primesbelow(N):
# http://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
#""" Input N>=6, Returns a list of primes, 2 <= p < N """
correction = N % 6 > 1
N = {0:N, 1:N-1, 2:N+4, 3:N+3, 4:N+2, 5:N+1}[N%6]
sieve = [True] * (N // 3)
sieve[0] = False
for i in range(int(N ** .5) // 3 + 1):
if sieve[i]:
k = (3 * i + 1) | 1
sieve[k*k // 3::2*k] = [False] * ((N//6 - (k*k)//6 - 1)//k + 1)
sieve[(k*k + 4*k - 2*k*(i%2)) // 3::2*k] = [False] * ((N // 6 - (k*k + 4*k - 2*k*(i%2))//6 - 1) // k + 1)
return [2, 3] + [(3 * i + 1) | 1 for i in range(1, N//3 - correction) if sieve[i]]
smallprimeset = set(primesbelow(100000))
_smallprimeset = 100000
def isprime(n, precision=7):
# http://en.wikipedia.org/wiki/Miller-Rabin_primality_test#Algorithm_and_running_time
if n == 1 or n % 2 == 0:
return False
elif n < 1:
raise ValueError("Out of bounds, first argument must be > 0")
elif n < _smallprimeset:
return n in smallprimeset
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for repeat in range(precision):
a = random.randrange(2, n - 2)
x = pow(a, d, n)
if x == 1 or x == n - 1: continue
for r in range(s - 1):
x = pow(x, 2, n)
if x == 1: return False
if x == n - 1: break
else: return False
return True
# https://comeoncodeon.wordpress.com/2010/09/18/pollard-rho-brent-integer-factorization/
def pollard_brent(n):
if n % 2 == 0: return 2
if n % 3 == 0: return 3
y, c, m = random.randint(1, n-1), random.randint(1, n-1), random.randint(1, n-1)
g, r, q = 1, 1, 1
while g == 1:
x = y
for i in range(r):
y = (pow(y, 2, n) + c) % n
k = 0
while k < r and g==1:
ys = y
for i in range(min(m, r-k)):
y = (pow(y, 2, n) + c) % n
q = q * abs(x-y) % n
g = gcd(q, n)
k += m
r *= 2
if g == n:
while True:
ys = (pow(ys, 2, n) + c) % n
g = gcd(abs(x - ys), n)
if g > 1:
break
return g
smallprimes = primesbelow(10000) # might seem low, but 1000*1000 = 1000000, so this will fully factor every composite < 1000000
def primefactors(n, sort=False):
factors = []
limit = int(n ** .5) + 1
for checker in smallprimes:
if checker > limit: break
while n % checker == 0:
factors.append(checker)
n //= checker
limit = int(n ** .5) + 1
if checker > limit: break
if n < 2: return factors
while n > 1:
if isprime(n):
factors.append(n)
break
factor = pollard_brent(n) # trial division did not fully factor, switch to pollard-brent
factors.extend(primefactors(factor)) # recurse to factor the not necessarily prime factor returned by pollard-brent
n //= factor
if sort: factors.sort()
return factors
def factorization(n):
factors = {}
for p1 in primefactors(n):
try:
factors[p1] += 1
except KeyError:
factors[p1] = 1
return factors
totients = {}
def totient(n):
if n == 0: return 1
try: return totients[n]
except KeyError: pass
tot = 1
for p, exp in factorization(n).items():
tot *= (p - 1) * p ** (exp - 1)
totients[n] = tot
return tot
def gcd(a, b):
if a == b: return a
while b > 0: a, b = b, a % b
return a
def lcm(a, b):
return abs(a * b) // gcd(a, b)