Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

用Python生成马赛克画 #60

Open
guevara opened this issue Sep 25, 2018 · 0 comments
Open

用Python生成马赛克画 #60

guevara opened this issue Sep 25, 2018 · 0 comments

Comments

@guevara
Copy link
Owner

guevara commented Sep 25, 2018

用Python生成马赛克画



https://ift.tt/2O6WvJe



技术小能手


大家知道马赛克画是什么吗?不是动作片里的马赛克哦~~

马赛克画是一张由小图拼成的大图,本文的封面就是我们的效果图,放大看细节,每一块都是一张独立的图片,拼在一起组成一张大图,感觉像是用马赛克拼出来的画,所以叫马赛克画。看到网上的一些马赛克画觉得很酷,于是自己用Python实现了一下将一张原图转换成马赛克画。

我们的效果图是这样的

3459e77c0c6fee728146425213f4cee0f31d2718

原图是这样的

375d863c0edc5210fc1b64cbafee2b8bb66e633e

实现的具体思路是这样

第一步:首先收集一组图片,这些图片会作为大图中的小方格图片。图片越多,最后生成的图片颜色越接近。

第二步:将要转换的图片分割成一个一个小方格图片,像下面这样

c40d6208258c778635753c6eebab873650560f01

第三步:对于每一个小方格图片,取图片集里面最接近的图片替换。所有小方格都替换后,就生成了我们最终的马赛克画。

听上去是不是很简单?

我们来看一下具体的实现步骤,下面是一些核心代码。

我们的图片集存在images目录下,下面的代码加载目录下所有的图片,并缩放成统一的尺寸

import re
import os
import cv2
import numpy as np
from tqdm import tqdm

IMG_DIR = "images"

def load_all_images(tile_row, tile_col):
img_dir = IMG_DIR
filenames = os.listdir(img_dir)
result = []
print(len(filenames))
for filename in tqdm(filenames):
if not re.search(".jpg", filename, re.I):
continue
try:
filepath = os.path.join(img_dir, filename)
im = cv2.imread(filepath)
row = im.shape[0]
col = im.shape[1]
im = resize(im, tile_row, tile_col)
result.append(np.array(im))
except Exception as e:
msg = "error with {} - {}".format(filepath, str(e))
print(msg)
return np.array(result, dtype=np.uint8)

这里load_all_images函数的参数就是统一后的尺寸,tile_row和tile_col分别对应高和宽。

下面的代码对要转换的图片进行分割

img = cv2.imread(infile)
tile_row, tile_col = get_tile_row_col(img.shape)
for row in range(0, img_shape[0], tile_row):
    for col in range(0, img_shape[1], tile_col):
        roi = img[row:row+tile_row,col:col+tile_col,:]

我们将要转换的图片分割成一个个小方格,tile_row和tile_col是小方格的高和宽,roi存取小方格中的图片数据。

下面是计算两张图片相似度的函数

from scipy.spatial.distance import euclidean
def img_distance(im1, im2):
    if im1.shape != im2.shape:
        msg = "shapes are different {} {}".format(im1.shape, im2.shape)
        raise Exception(msg)
    array1 = im1.flatten()
    array2 = im2.flatten()
    dist = euclidean(array1, array2)
    return dist

im1和im2是两张图片的数据,图片数据是一个三维的numpy数组,这里我们将三维数组转换成一维数组后,比较两者的欧式距离。之后要找出最相似的图片,只需遍历图片集中所有的图片,找到距离最短的那张图片,去替换原图中的小方格就可以了。

我们再来看一下最终实现的效果

3bb79e689710f2775f81b4c6363dcc918306843a

放大图中局部的细节如下

19029a9f3eb85efab11226efde97eb311cdef58d

如果对图片的画质不满意,想要更精细的画质,可以考虑在分割的时候把图片分割成更小的方格,不过这样也会增加程序运行的时间。

生成图片的过程比较耗时,考虑到性能原因,原程序中使用多进程的方式并行处理。

原文发布时间为:2018-09-25

原文作者:shenzhongqiang

本文来自云栖社区合作伙伴“python爬虫人工智能大数据”,了解相关信息可以关注“python爬虫人工智能大数据”。


如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件至:yqgroup@service.aliyun.com 进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容。

【云栖快讯】诚邀你用自己的技术能力来用心回答每一个问题,通过回答传承技术知识、经验、心得,问答专家期待你加入!  

详情请点击




Comp

via 云栖社区-精彩推荐 https://ift.tt/25jm2hM

September 25, 2018 at 02:20PM
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant