-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
FriendCircles.cpp
117 lines (107 loc) · 3.69 KB
/
FriendCircles.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
// Source : https://leetcode.com/problems/friend-circles/
// Author : Hao Chen
// Date : 2019-03-26
/*****************************************************************************************************
*
*
* There are N students in a class. Some of them are friends, while some are not. Their friendship is
* transitive in nature. For example, if A is a direct friend of B, and B is a direct friend of C,
* then A is an indirect friend of C. And we defined a friend circle is a group of students who are
* direct or indirect friends.
*
* Given a N*N matrix M representing the friend relationship between students in the class. If M[i][j]
* = 1, then the ith and jth students are direct friends with each other, otherwise not. And you have
* to output the total number of friend circles among all the students.
*
* Example 1:
*
* Input:
* [[1,1,0],
* [1,1,0],
* [0,0,1]]
* Output: 2
* Explanation:The 0th and 1st students are direct friends, so they are in a friend circle. The 2nd
* student himself is in a friend circle. So return 2.
*
* Example 2:
*
* Input:
* [[1,1,0],
* [1,1,1],
* [0,1,1]]
* Output: 1
* Explanation:The 0th and 1st students are direct friends, the 1st and 2nd students are direct
* friends, so the 0th and 2nd students are indirect friends. All of them are in the same friend
* circle, so return 1.
*
* Note:
*
* N is in range [1,200].
* M[i][i] = 1 for all students.
* If M[i][j] = 1, then M[j][i] = 1.
*
******************************************************************************************************/
class Solution {
public:
// -----------------------------------------------------------------------------
//DFS solution is quite easy to understand, just like the "Number of Island"
int findCircleNum_DFS(vector<vector<int>>& M) {
int n = 0;
for (int i=0; i<M.size(); i++) {
for (int j=0; j<M[0].size(); j++) {
if ( M[i][j] == 1 ) {
n++;
M[i][j] = 2;
mark(M, j);
}
}
}
return n;
}
void mark(vector<vector<int>>& M, int i ) {
for ( int j=0; j<M[i].size(); j++ ){
if ( M[i][j] == 1 ) {
M[i][j] = 2;
mark(M, j);
}
}
}
// -----------------------------------------------------------------------------
//Union Find Solution
int findCircleNum_UF(vector<vector<int>>& M) {
vector<int> relations(M.size());
for (int i=0; i<relations.size(); i++){
relations[i] = i;
}
int n = M.size(); //by default, there are N friend cicles
for (int i=0; i<M.size(); i++) {
for (int j=0; j<M[0].size(); j++) {
if ( M[i][j] == 1 && i != j ) {
if ( join(relations, i, j) ) n--;
}
}
}
return n;
}
//find the tail node.
// if a -> b -> c -> d, then find(a),find(b) or find(c) would return d;
int find(vector<int>& relations, int i ) {
while( relations[i] != i ) {
i = relations[i];
}
return i;
}
// join the x cicle with y cicle,
// if x and y are already in same friend cicle, then return false, else return true;
bool join(vector<int> &relations, int x, int y) {
int tx = find(relations, x);
int ty = find(relations, y);
if ( tx != ty ) relations[tx] = ty;
return tx != ty;
}
// -----------------------------------------------------------------------------
int findCircleNum(vector<vector<int>>& M) {
return findCircleNum_UF(M);
return findCircleNum_DFS(M);
}
};