-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
uniquePathsII.java
73 lines (69 loc) · 2.01 KB
/
uniquePathsII.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// Source : https://oj.leetcode.com/problems/unique-paths-ii/
// Inspired by : http://www.jiuzhang.com/solutions/unique-paths/
// Author : Lei Cao
// Date : 2015-10-11
/**********************************************************************************
*
* Follow up for "Unique Paths":
*
* Now consider if some obstacles are added to the grids. How many unique paths would there be?
*
* An obstacle and empty space is marked as 1 and 0 respectively in the grid.
*
* For example,
* There is one obstacle in the middle of a 3x3 grid as illustrated below.
*
* [
* [0,0,0],
* [0,1,0],
* [0,0,0]
* ]
*
* The total number of unique paths is 2.
*
* Note: m and n will be at most 100.
*
**********************************************************************************/
package dynamicProgramming.uniquePaths;
public class uniquePathsII {
/**
* @param obstacleGrid: A list of lists of integers
* @return: An integer
*/
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid.length == 0 || obstacleGrid[0].length ==0) {
return 0;
}
if (obstacleGrid[0][0] == 1) {
return 0;
}
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
// write your code here
int[][] matrix = new int[m][n];
for (int i = 0; i < m; i++) {
if (obstacleGrid[i][0] != 1) {
matrix[i][0] = 1;
} else {
break;
}
}
for (int i = 0; i < n; i++) {
if (obstacleGrid[0][i] != 1) {
matrix[0][i] = 1;
} else {
break;
}
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) {
matrix[i][j] = 0;
} else {
matrix[i][j] = matrix[i-1][j] + matrix[i][j-1];
}
}
}
return matrix[m-1][n-1];
}
}