-
Notifications
You must be signed in to change notification settings - Fork 649
/
image_data_layer.cpp
274 lines (252 loc) · 9.75 KB
/
image_data_layer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <fstream> // NOLINT(readability/streams)
#include <iostream> // NOLINT(readability/streams)
#include <string>
#include <utility>
#include <vector>
#include "caffe/data_transformer.hpp"
#include "caffe/layers/base_data_layer.hpp"
#include "caffe/layers/image_data_layer.hpp"
#include "caffe/util/benchmark.hpp"
#include "caffe/util/io.hpp"
#include "caffe/util/math_functions.hpp"
#include "caffe/util/rng.hpp"
namespace caffe {
template <typename Dtype>
ImageDataLayer<Dtype>::~ImageDataLayer<Dtype>() {
this->StopInternalThread();
}
template <typename Dtype>
void ImageDataLayer<Dtype>::DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const int new_height = this->layer_param_.image_data_param().new_height();
const int new_width = this->layer_param_.image_data_param().new_width();
const bool is_color = this->layer_param_.image_data_param().is_color();
string root_folder = this->layer_param_.image_data_param().root_folder();
balance_ = this->layer_param_.image_data_param().balance_class();
CHECK((new_height == 0 && new_width == 0) ||
(new_height > 0 && new_width > 0)) << "Current implementation requires "
"new_height and new_width to be set at the same time.";
// Read the file with filenames and labels
const string& source = this->layer_param_.image_data_param().source();
LOG(INFO) << "Opening file " << source;
std::ifstream infile(source.c_str());
string line;
size_t pos;
int label;
lines_.clear();
int max_label = 0;
while (std::getline(infile, line)) {
pos = line.find_last_of(' ');
label = atoi(line.substr(pos + 1).c_str());
lines_.push_back(std::make_pair(line.substr(0, pos), label));
if (label > max_label) max_label = label;
}
CHECK(!lines_.empty()) << "File is empty";
if (top.size() == 3) {
num_samples_ = vector<int>(max_label + 1);
class_weights_ = vector<Dtype>(max_label + 1);
for (auto l : lines_) {
num_samples_[l.second]++;
}
Dtype mean_sample_num = (Dtype)lines_.size() / (Dtype)(max_label + 1);
Dtype min_weight = 9999, max_weight = 0;
for (int i = 0; i < num_samples_.size(); i++) {
if (num_samples_[i] > 0) {
class_weights_[i] = mean_sample_num / num_samples_[i];
if (class_weights_[i] < min_weight) min_weight = class_weights_[i];
if (class_weights_[i] > max_weight) max_weight = class_weights_[i];
}
else {
class_weights_[i] = 1;
}
}
LOG(INFO) << "label weight min:" << min_weight << " max:" << max_weight;
}
if (balance_) {
num_samples_ = vector<int>(max_label + 1);
filename_by_class_ = vector<vector<std::pair<std::string, int> > >(max_label + 1);
for (auto l : lines_) {
num_samples_[l.second]++;
filename_by_class_[l.second].push_back(std::make_pair(l.first, 0));
}
class_id_ = 0;
}
if (this->layer_param_.image_data_param().shuffle()) {
// randomly shuffle data
LOG(INFO) << "Shuffling data";
const unsigned int prefetch_rng_seed = caffe_rng_rand();
prefetch_rng_.reset(new Caffe::RNG(prefetch_rng_seed));
ShuffleImages();
} else {
if (this->phase_ == TRAIN && Caffe::solver_rank() > 0 &&
this->layer_param_.image_data_param().rand_skip() == 0) {
LOG(WARNING) << "Shuffling or skipping recommended for multi-GPU";
}
}
LOG(INFO) << "A total of " << lines_.size() << " images.";
lines_id_ = 0;
// Check if we would need to randomly skip a few data points
if (this->layer_param_.image_data_param().rand_skip()) {
unsigned int skip = caffe_rng_rand() %
this->layer_param_.image_data_param().rand_skip();
LOG(INFO) << "Skipping first " << skip << " data points.";
CHECK_GT(lines_.size(), skip) << "Not enough points to skip";
lines_id_ = skip;
}
// Read an image, and use it to initialize the top blob.
cv::Mat cv_img = ReadImageToCVMat(root_folder + lines_[lines_id_].first,
new_height, new_width, is_color);
CHECK(cv_img.data) << "Could not load " << lines_[lines_id_].first;
// Use data_transformer to infer the expected blob shape from a cv_image.
vector<int> top_shape = this->data_transformer_->InferBlobShape(cv_img);
this->transformed_data_.Reshape(top_shape);
// Reshape prefetch_data and top[0] according to the batch_size.
const int batch_size = this->layer_param_.image_data_param().batch_size();
CHECK_GT(batch_size, 0) << "Positive batch size required";
top_shape[0] = batch_size;
for (int i = 0; i < this->prefetch_.size(); ++i) {
this->prefetch_[i]->data_.Reshape(top_shape);
}
top[0]->Reshape(top_shape);
LOG(INFO) << "output data size: " << top[0]->num() << ","
<< top[0]->channels() << "," << top[0]->height() << ","
<< top[0]->width();
// label
vector<int> label_shape(1, batch_size);
top[1]->Reshape(label_shape);
for (int i = 0; i < this->prefetch_.size(); ++i) {
this->prefetch_[i]->label_.Reshape(label_shape);
}
if (top.size() == 3) {
top[2]->Reshape(label_shape);
for (int i = 0; i < this->prefetch_.size(); ++i) {
this->prefetch_[i]->weight_.Reshape(label_shape);
}
this->output_weights_ = true;
}
}
template <typename Dtype>
void ImageDataLayer<Dtype>::ShuffleImages() {
caffe::rng_t* prefetch_rng =
static_cast<caffe::rng_t*>(prefetch_rng_->generator());
shuffle(lines_.begin(), lines_.end(), prefetch_rng);
}
// This function is called on prefetch thread
template <typename Dtype>
void ImageDataLayer<Dtype>::load_batch(Batch<Dtype>* batch) {
CPUTimer batch_timer;
batch_timer.Start();
double read_time = 0;
double trans_time = 0;
CPUTimer timer;
CHECK(batch->data_.count());
CHECK(this->transformed_data_.count());
ImageDataParameter image_data_param = this->layer_param_.image_data_param();
const int batch_size = image_data_param.batch_size();
const int new_height = image_data_param.new_height();
const int new_width = image_data_param.new_width();
const bool is_color = image_data_param.is_color();
string root_folder = image_data_param.root_folder();
// Reshape according to the first image of each batch
// on single input batches allows for inputs of varying dimension.
cv::Mat cv_img = ReadImageToCVMat(root_folder + lines_[lines_id_].first,
new_height, new_width, is_color);
CHECK(cv_img.data) << "Could not load " << lines_[lines_id_].first;
// Use data_transformer to infer the expected blob shape from a cv_img.
vector<int> top_shape = this->data_transformer_->InferBlobShape(cv_img);
this->transformed_data_.Reshape(top_shape);
// Reshape batch according to the batch_size.
top_shape[0] = batch_size;
batch->data_.Reshape(top_shape);
Dtype* prefetch_data = batch->data_.mutable_cpu_data();
Dtype* prefetch_label = batch->label_.mutable_cpu_data();
Dtype* prefetch_weight;
if (this->output_weights_) {
prefetch_weight = batch->weight_.mutable_cpu_data();
}
// datum scales
const int lines_size = lines_.size();
for (int item_id = 0; item_id < batch_size; ++item_id) {
// get a blob
timer.Start();
bool valid_sample = false;
while (!valid_sample) {
std::pair<std::string, int> this_line;
if (balance_) {
int pick_index = (caffe_rng_rand() % num_samples_[class_id_]) + 1;
for (auto& sample : filename_by_class_[class_id_]) {
if (sample.second == 0) {
pick_index--;
if (pick_index == 0) {
this_line = std::make_pair(sample.first, class_id_);
sample.second = 1;
num_samples_[class_id_]--;
break;
}
}
}
CHECK_GT(this_line.first.size(), 0);
if (num_samples_[class_id_] == 0) {
num_samples_[class_id_] = filename_by_class_[class_id_].size();
for (auto& sample : filename_by_class_[class_id_]) {
sample.second = 0;
}
}
}
else {
CHECK_GT(lines_size, lines_id_);
this_line = lines_[lines_id_];
}
cv::Mat cv_img = ReadImageToCVMat(root_folder + this_line.first,
new_height, new_width, is_color);
if (!cv_img.data) {
LOG(INFO) << "Could not load " << this_line.first;
valid_sample = false;
}
else {
valid_sample = true;
}
read_time += timer.MicroSeconds();
timer.Start();
// Apply transformations (mirror, crop...) to the image
int offset = batch->data_.offset(item_id);
this->transformed_data_.set_cpu_data(prefetch_data + offset);
this->data_transformer_->Transform(cv_img, &(this->transformed_data_));
trans_time += timer.MicroSeconds();
prefetch_label[item_id] = this_line.second;
if (this->output_weights_) {
prefetch_weight[item_id] = class_weights_[this_line.second];
}
// go to the next iter
if (balance_) {
class_id_++;
if (class_id_ >= num_samples_.size()) {
// We have reached the end. Restart from the first.
DLOG(INFO) << "Restarting data prefetching from start.";
class_id_ = 0;
}
}
else {
lines_id_++;
if (lines_id_ >= lines_size) {
// We have reached the end. Restart from the first.
DLOG(INFO) << "Restarting data prefetching from start.";
lines_id_ = 0;
if (this->layer_param_.image_data_param().shuffle()) {
ShuffleImages();
}
}
}
}
}
batch_timer.Stop();
DLOG(INFO) << "Prefetch batch: " << batch_timer.MilliSeconds() << " ms.";
DLOG(INFO) << " Read time: " << read_time / 1000 << " ms.";
DLOG(INFO) << "Transform time: " << trans_time / 1000 << " ms.";
}
INSTANTIATE_CLASS(ImageDataLayer);
REGISTER_LAYER_CLASS(ImageData);
} // namespace caffe
#endif // USE_OPENCV