-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
executable file
·91 lines (79 loc) · 3.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from __future__ import print_function
import argparse
import os
import torch
import model
import multiprocessing as mp
import wsad_dataset
import random
from test import test
from train import train
from tensorboard_logger import Logger
import options
import numpy as np
from torch.optim import lr_scheduler
from tqdm import tqdm
import shutil
torch.set_default_tensor_type('torch.cuda.FloatTensor')
def setup_seed(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import torch.optim as optim
if __name__ == '__main__':
pool = mp.Pool(5)
args = options.parser.parse_args()
# seed = random.randint(1,10000)
seed=args.seed
print('=============seed: {}, pid: {}============='.format(seed,os.getpid()))
setup_seed(seed)
# torch.manual_seed(args.seed)
device = torch.device("cuda")
dataset = getattr(wsad_dataset,args.dataset)(args)
if 'Thumos' in args.dataset_name:
max_map=[0]*9
else:
max_map=[0]*10
if not os.path.exists('./ckpt/'):
os.makedirs('./ckpt/')
if not os.path.exists('./logs/' + args.model_name):
os.makedirs('./logs/' + args.model_name)
if os.path.exists('./logs/' + args.model_name):
shutil.rmtree('./logs/' + args.model_name)
logger = Logger('./logs/' + args.model_name)
print(args)
# model = Model(dataset.feature_size, dataset.num_class).to(device)
model = getattr(model,args.use_model)(dataset.feature_size, dataset.num_class,opt=args).to(device)
if args.pretrained_ckpt is not None:
model.load_state_dict(torch.load(args.pretrained_ckpt))
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# optimizer = optim.SGD(model.parameters(), lr=args.lr,
# momentum=args.momentum, weight_decay=args.weight_decay)
# scheduler = lr_scheduler.StepLR(optimizer,step_size = args.lr_decay,gamma = 0.5)
total_loss = 0
lrs = [args.lr, args.lr/5, args.lr/5/5]
print(model)
for itr in tqdm(range(args.max_iter)):
loss = train(itr, dataset, args, model, optimizer, logger, device)
total_loss+=loss
if itr % args.interval == 0 and not itr == 0:
print('Iteration: %d, Loss: %.5f' %(itr, total_loss/args.interval))
total_loss = 0
torch.save(model.state_dict(), './ckpt/last_' + args.model_name + '.pkl')
iou,dmap = test(itr, dataset, args, model, logger, device,pool)
if 'Thumos' in args.dataset_name:
cond=sum(dmap[:7])>sum(max_map[:7])
else:
cond=np.mean(dmap)>np.mean(max_map)
if cond:
torch.save(model.state_dict(), './ckpt/best_' + args.model_name + '.pkl')
max_map = dmap
print('||'.join(['MAX map @ {} = {:.3f} '.format(iou[i],max_map[i]*100) for i in range(len(iou))]))
max_map = np.array(max_map)
print('mAP Avg 0.1-0.5: {}, mAP Avg 0.1-0.7: {}, mAP Avg ALL: {}'.format(np.mean(max_map[:5])*100,np.mean(max_map[:7])*100,np.mean(max_map)*100))
print("------------------pid: {}--------------------".format(os.getpid()))