-
Notifications
You must be signed in to change notification settings - Fork 0
/
listBasedScheduling.cpp
293 lines (283 loc) · 7.33 KB
/
listBasedScheduling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/********************************************/
/*Program: Graph Reordering in ALAP Form *
* and Mobility *
* Authors: Harshit Agarwal *
* Nitish Rai *
* Pritha Ganguly *
* Version: 1.0 *
* Description: This program takes a .dot *
* file as input and evaluates the ASAP *
* form of the graph mentioned in the file. *
* Structures used: Struct, Pointers, Loops, *
* File Handlers, Library Functions. */
/********************************************/
#include <iostream>
#include <stdlib.h>
#include <algorithm>
#include <fstream>
#include <string.h>
#include <assert.h>
using namespace std;
#define MULTIPLIER 2
#define ADDER 1
#define SUBTRACTOR 1
#define COMPARATOR 1
//Structure for the Node to store the individual elements of the graphs.
typedef unsigned long long int LL;
typedef struct node {
char node_name[10];
node *next = NULL;
node *pred = NULL;
int node_number;
int control_step_asap;
int control_step_alap;
int mobility;
}node;
//Main Function starts. All the computation of the algorithm resides here.
int main()
{
ifstream file; //File Handler
file.open("test.dot",ios::in); //Accessing the input file. It is in the .dot format. *Needs to be changed according to the input path of the file*
node *arr[100000];
char num1[10];
char num2[10];
int global_count=0; //Global counter for the number of nodes present in the input graph.
if(file.is_open())
{
string line;
getline(file, line);
getline(file, line);
while(!file.eof())
{
getline(file, line);
for(LL i=0; i<line.length(); i++)
{
if(line[i] == '=' && line[i+1] == ' ') //Condition for checking and accessing the lines containing the node information of the graphs.
{
node *vertex = new node(); //Dynamically defining a new node module. Vertex points to it
vertex->node_name[0] = line[i+2];
vertex->node_name[1] = line[i+3];
vertex->node_name[2] = line[i+4];
char num[10];
int k=0;
for(LL j = 0; j<line.length(); j++)
{
if(int(line[j])>=48 && int(line[j])<=57)
{
num[k]=line[j];
k++;
if(line[j+1]==' ')
break;
}
}
vertex->node_number = atoi(num); //Storing the node number in the node structure.
arr[global_count] = vertex; //Adding the node pointer to an array, for access later while defining links.
global_count++;
}
if(line[i] == '-' && line[i+1] == '>') //Condition for accessing the lines where links are defined.
{
int k=0,l=0;
for(LL j = 0; j<line.length(); j++)
{
if(int(line[j])>=48 && int(line[j])<=57)
{
num1[k]=line[j];
k++;
if(line[j+1] == ' ')
{
l=j+1;
break;
}
}
}
int x=0;
for(int y = l; y<line.length(); y++)
{
if(int(line[y])>=48 && int(line[y])<=57)
{
num2[x]=line[y];
x++;
if(line[y+1] == ' ')
break;
}
}
node *vertex1, *vertex2; //Declaring two node pointers to map one node to another.
for(LL j = 0; j < global_count; j++)
{
if(arr[j]->node_number == atoi(num1))
vertex1 = arr[j];
if(arr[j]->node_number == atoi(num2))
vertex2 = arr[j];
}
vertex1->next = vertex2; //Defining the next relationship from one node to the other.
vertex2->pred = vertex1; //Defining the previous relationship in the reverse order.
for(int j=0; j<10; j++)
num1[j]=num2[j]='\0';
}
}
}
}
file.close(); //Colsing the openend file.
int max=1;
//ASAP Scheduling
for(LL i = 0; i < global_count; i++) //Scheduling the nodes according to ASAP notation.
{
if(arr[i]->pred == NULL)
{
arr[i]->control_step_asap = 1; //All the nodes with no predecessor are assigned in the First control step.
arr[i]->mobility = arr[i]->control_step_asap; //Assigning the control step value to mobility
}
else
{
if(arr[i]->control_step_asap < (arr[i]->pred->control_step_asap + 1)) //ASAP Scheduling for the nodes which are not present in Control Step 1
{
arr[i]->control_step_asap = arr[i]->pred->control_step_asap + 1;
arr[i]->mobility = arr[i]->control_step_asap;
if(max< (arr[i]->control_step_asap))
max = arr[i]->control_step_asap;
}
}
}
//ALAP Scheduling
int max1=max;
for(LL i = 0; i < global_count; i++) //Scheduling the nodes in the last Control Step
{
if(arr[i]->next == NULL)
arr[i]->control_step_alap = max;
}
for(LL i = 0; i < max; i++)
{
for(LL j = 0; j < global_count; j++)
{
if(arr[j]->next != NULL)
if(arr[j]->next->control_step_alap == max1)
arr[j]->control_step_alap = max1-1;
}
max1--;
}
for(LL i = 0; i < global_count; i++)
{ //Calculating the Mobility Value by Subtracting the previously computed ASAP Control Step Value from current ALAP Control Step value.
arr[i]->mobility = arr[i]->control_step_alap - arr[i]->control_step_asap;
}
//LIST BASED SCHEDULING
int mul=MULTIPLIER;
int add=ADDER;
int sub=SUBTRACTOR;
int comp=COMPARATOR;
node *list[100000];
for(LL i = 0; i < global_count; i++)
{
for(LL j = i; j < global_count; j++)
{
if(arr[i]->control_step_asap > arr[j]->control_step_asap)
{
node *temp;
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
}
for(LL j = 1; j <= max; j++)
{
for(LL x = 1; x <= max; x++)
{
for(LL y = 0; y < global_count; y++)
{
if(arr[y]->control_step_asap == x)
{
for(LL k = y; k < global_count; k++)
{
if((arr[k]->control_step_asap == x) && (arr[k]->mobility < arr[y]->mobility))
{
node *temp;
temp = arr[k];
arr[k] = arr[y];
arr[y] = temp;
}
}
}
}
}
for(LL i = 0; i < global_count; i++)
{
if(arr[i]->control_step_asap == j)
{
if(arr[i]->next!=NULL && arr[i]->next->control_step_asap == arr[i]->control_step_asap)
arr[i]->next->control_step_asap++;
if(arr[i]->node_name[0] == 'm' && arr[i]->node_name[1] == 'u')
{
if(mul != 0)
mul--;
else
{
arr[i]->control_step_asap++;
}
}
if(arr[i]->node_name[0] == 'm' && arr[i]->node_name[1] == 'i')
{
if(sub != 0)
sub--;
else
{
arr[i]->control_step_asap++;
}
}
if(arr[i]->node_name[0] == 'a')
{
if(add != 0)
add--;
else
{
arr[i]->control_step_asap++;
}
}
if(arr[i]->node_name[0] == 'l')
{
if(comp != 0)
comp--;
else
{
arr[i]->control_step_asap++;
}
}
}
}
mul=MULTIPLIER;
add=ADDER;
sub=SUBTRACTOR;
comp=COMPARATOR;
}
for(LL i =0 ;i<global_count;i++)
cout<<arr[i]->node_number<<" "<<arr[i]->control_step_asap<<" "<<arr[i]->mobility<<endl;
//PRINT
/*
int count=0;
for(LL i = 1; i < global_count; i++) //Printing the Scheduled graph.
{
cout<<"For Control Step: "<<i<<endl;
for(LL j = 0; j< global_count; j++)
{
if(arr[j]->control_step == i)
{
if(arr[j]->next != NULL)
{
cout<<arr[j]->node_number<<" "<<arr[j]->node_name<<" <"<<arr[j]->mobility<<"> "<<" -> "<<arr[j]->next->node_number<<" "<<arr[j]->next->node_name<<endl;
count++;
}
else
{
cout<<arr[j]->node_number<<" "<<arr[j]->node_name<<" <"<<arr[j]->mobility<<"> "<<endl;
count++;
}
}
}
cout<<endl;
cout<<count<<endl;
if(count == global_count)
break;
}*/
//for(LL i = 0; i < global_count; i++)
// cout<<arr[i]->node_number<<" "<<arr[i]->mobility<<endl;
return 0;
}