-
Notifications
You must be signed in to change notification settings - Fork 3
/
picone_catch_analysis.nb
3176 lines (3108 loc) · 144 KB
/
picone_catch_analysis.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 147379, 3168]
NotebookOptionsPosition[ 142365, 3044]
NotebookOutlinePosition[ 142749, 3061]
CellTagsIndexPosition[ 142706, 3058]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Catch", "Section",
CellChangeTimes->{{3.701319001142413*^9,
3.701319004663117*^9}},ExpressionUUID->"0c865d2a-7e19-4bb1-91fb-\
15650db685d6"],
Cell["Define constant and physics rules.", "Text",
CellChangeTimes->{{3.701303771364893*^9,
3.701303779323121*^9}},ExpressionUUID->"d1928817-54eb-493e-a278-\
1cdac5c14c2f"],
Cell[BoxData[{
RowBox[{
RowBox[{"conRules", " ", "=", " ",
RowBox[{"{", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"xcatch", "\[Rule]", "3"}], ",", " ",
RowBox[{"(*", " ",
RowBox[{"m", ",", " ",
RowBox[{"catch", " ", "height"}]}], " ", "*)"}], "\[IndentingNewLine]",
"\t",
RowBox[{"x10", " ", "\[Rule]", " ", "5"}], ",", " ",
RowBox[{"(*", " ",
RowBox[{"m", ",", " ",
RowBox[{
"height", " ", "of", " ", "puck", " ", "passing", " ", "break", " ",
"beam"}]}], " ", "*)"}], "\[IndentingNewLine]", "\t",
RowBox[{"x20", " ", "\[Rule]", " ", "4"}], ",", " ",
RowBox[{"(*", " ",
RowBox[{"m", ",", " ",
RowBox[{
"height", " ", "of", " ", "platform", " ", "when", " ", "break", " ",
"beam", " ", "tripped"}]}], " ", "*)"}], "\[IndentingNewLine]", "\t",
RowBox[{"xf", " ", "\[Rule]", " ", "2.5"}], ",", " ",
RowBox[{"(*", " ",
RowBox[{"m", ",", " ",
RowBox[{"final", " ", "height"}]}], " ", "*)"}], "\[IndentingNewLine]",
"\t",
RowBox[{"tf", " ", "\[Rule]", " ", "3"}], ",", " ",
RowBox[{"(*", " ",
RowBox[{"s", ",", " ",
RowBox[{"time", " ", "when", " ",
RowBox[{"platform", "/", "puck"}], " ", "at", " ", "final", " ",
"height"}]}], " ", "*)"}], "\[IndentingNewLine]", "\t",
RowBox[{"v10", " ", "\[Rule]", " ",
RowBox[{"-", "1"}]}], ",", " ",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"m", "/", "s"}], ",", " ",
RowBox[{
"velocity", " ", "of", " ", "puck", " ", "passing", " ", "break", " ",
"beam"}]}], " ", "*)"}], "\[IndentingNewLine]", "\t",
RowBox[{"v20", " ", "\[Rule]", " ", "0"}], ",", " ",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"m", "/", "s"}], ",", " ",
RowBox[{
"velocity", " ", "of", " ", "platform", " ", "when", " ", "puck", " ",
"passing", " ", "break", " ", "beam"}]}], " ", "*)"}],
"\[IndentingNewLine]", "\t",
RowBox[{"g", " ", "\[Rule]", " ",
RowBox[{"-", "9.81"}]}]}], " ",
RowBox[{"(*", " ",
RowBox[{"m", "/",
RowBox[{"s", "^", "2"}]}], " ", "*)"}], "\[IndentingNewLine]", "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"physicsRules", " ", "=", " ",
RowBox[{"{", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{
RowBox[{"v1", "[", "t", "]"}], " ", "\[Rule]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"a1", "[", "t", "]"}], "//",
RowBox[{
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{"#", ",", "t"}], "]"}], "+", "v10"}], "&"}]}], ")"}]}],
",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"v2", "[", "t", "]"}], " ", "\[Rule]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"a2", "[", "t", "]"}], "//",
RowBox[{
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{"#", ",", "t"}], "]"}], "+", "v20"}], "&"}]}], ")"}]}],
",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"x1", "[", "t", "]"}], " ", "\[Rule]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"v1", "[", "t", "]"}], "//",
RowBox[{
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{"#", ",", "t"}], "]"}], "+", "x10"}], "&"}]}], ")"}]}],
",", "\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"x2", "[", "t", "]"}], " ", "\[Rule]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"v2", "[", "t", "]"}], "//",
RowBox[{
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{"#", ",", "t"}], "]"}], " ", "+", " ", "x20"}], "&"}]}],
")"}]}]}], "\[IndentingNewLine]", "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"a1", "[", "t_", "]"}], ":=", " ", "g"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"a2", "[", "t_", "]"}], ":=",
RowBox[{"b20", "+",
RowBox[{"s20", "*", "t"}]}]}], ";", " ",
RowBox[{"(*", " ",
RowBox[{"linear", " ", "catch", " ", "acceleration"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ad", "[", "t_", "]"}], ":=",
RowBox[{"bd0", "+",
RowBox[{"sd0", "*", "t"}]}]}], ";", " ",
RowBox[{"(*", " ",
RowBox[{"deceleration", " ", "after", " ", "catch"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"a1p", "[", "t_", "]"}], ":=",
RowBox[{"Piecewise", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"a1", "[", "t", "]"}], ",",
RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "tcatch"}]}], "}"}],
",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"ad", "[", "t", "]"}], ",",
RowBox[{"tcatch", "<", "t"}]}], "}"}]}], "\[IndentingNewLine]", "}"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"a2p", "[", "t_", "]"}], ":=",
RowBox[{"Piecewise", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"a2", "[", "t", "]"}], ",",
RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "tcatch"}]}], "}"}],
",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"ad", "[", "t", "]"}], ",",
RowBox[{"tcatch", "<", "t"}]}], "}"}]}], "\[IndentingNewLine]", "}"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"v1p", "[", "t_", "]"}], ":=",
RowBox[{
RowBox[{"a1p", "[", "\[Tau]", "]"}], "//",
RowBox[{
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{"\[Tau]", ",", "0", ",", "t"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"{",
RowBox[{"t", "\[Element]", "Reals"}], "}"}]}]}], "]"}], "+",
"v10"}], "&"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"v2p", "[", "t_", "]"}], ":=",
RowBox[{
RowBox[{"a2p", "[", "\[Tau]", "]"}], "//",
RowBox[{
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{"\[Tau]", ",", "0", ",", "t"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"{",
RowBox[{"t", "\[Element]", "Reals"}], "}"}]}]}], "]"}], "+",
"v20"}], "&"}]}]}], ";",
RowBox[{
RowBox[{"x1p", "[", "t_", "]"}], ":=",
RowBox[{
RowBox[{"v1p", "[", "\[Tau]", "]"}], "//",
RowBox[{
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{"\[Tau]", ",", "0", ",", "t"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"{",
RowBox[{"t", "\[Element]", "Reals"}], "}"}]}]}], "]"}], "+",
"x10"}], "&"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"x2p", "[", "t_", "]"}], ":=",
RowBox[{
RowBox[{"v2p", "[", "\[Tau]", "]"}], "//",
RowBox[{
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{"\[Tau]", ",", "0", ",", "t"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"{",
RowBox[{"t", "\[Element]", "Reals"}], "}"}]}]}], "]"}], "+",
"x20"}], "&"}]}]}], ";"}]}], "Input",
CellChangeTimes->{{3.701202797684526*^9, 3.70120288054451*^9}, {
3.7012029167123327`*^9, 3.701202920510607*^9}, {3.701202976421196*^9,
3.701203062800392*^9}, {3.701203163356311*^9, 3.701203227161195*^9}, {
3.701203271736595*^9, 3.701203370124867*^9}, {3.701203416970656*^9,
3.701203582371201*^9}, {3.701203712507822*^9, 3.701203731432054*^9}, {
3.701203858033906*^9, 3.7012040575303583`*^9}, {3.7012040879318933`*^9,
3.701204152582086*^9}, {3.701204195424024*^9, 3.7012042044286222`*^9}, {
3.7012042451382627`*^9, 3.7012043625816917`*^9}, {3.70120441041649*^9,
3.701204474611802*^9}, {3.701204533278309*^9, 3.701204551925171*^9}, {
3.70120458852503*^9, 3.7012046194720583`*^9}, {3.701204682256515*^9,
3.701204706303197*^9}, {3.7012047540062838`*^9, 3.7012047740673323`*^9}, {
3.701204883099709*^9, 3.7012049206459637`*^9}, 3.701205913359022*^9, {
3.701206087906781*^9, 3.70120608817032*^9}, 3.7012061326824636`*^9, {
3.7012070617706833`*^9, 3.70120711388022*^9}, {3.7012078938568897`*^9,
3.701207899711132*^9}, {3.701208439532641*^9, 3.701208440062811*^9}, {
3.701208499185811*^9, 3.701208499810349*^9}, {3.7012101595306873`*^9,
3.7012101597482862`*^9}, {3.7012102376459513`*^9,
3.7012102382728252`*^9}, {3.7012104318792353`*^9, 3.70121043192002*^9}, {
3.7012652481431*^9, 3.701265295610009*^9}, {3.701265512208796*^9,
3.7012655353897543`*^9}, {3.70126848447781*^9, 3.70126851680023*^9}, {
3.7012685505669813`*^9, 3.7012685682212553`*^9}, {3.701270089964163*^9,
3.701270090840679*^9}, {3.7013004552748413`*^9, 3.701300486733728*^9}, {
3.701300573119211*^9, 3.70130069126766*^9}, 3.701300880386883*^9, {
3.7013009474542847`*^9, 3.701300949352889*^9}, {3.701300994649507*^9,
3.701301024949695*^9}, {3.701301254193417*^9, 3.701301254293056*^9}, {
3.701301716164146*^9, 3.701301776013781*^9}, {3.701301933119273*^9,
3.7013019491923447`*^9}, {3.701301980205216*^9, 3.701302000481895*^9}, {
3.701302795597486*^9, 3.701302852022979*^9}, {3.701302891014642*^9,
3.701302901411943*^9}, {3.701302956110927*^9, 3.701302972076726*^9}, {
3.70130302504001*^9, 3.701303177496561*^9}, {3.7013033250364113`*^9,
3.7013033263537407`*^9}, 3.701303412768244*^9, {3.701303468818791*^9,
3.70130346985067*^9}, {3.7013039659463673`*^9, 3.701303966159957*^9}, {
3.701303999655552*^9, 3.701304041473434*^9}, {3.7013063249535313`*^9,
3.701306329828837*^9}, {3.7013081396304073`*^9, 3.701308139763732*^9}, {
3.701308684864232*^9, 3.701308690259899*^9}, {3.701308751178245*^9,
3.701308797478137*^9}, {3.701309965590542*^9, 3.701309991146419*^9}, {
3.701310052231155*^9, 3.701310073474903*^9}, {3.701312667568968*^9,
3.701312753309545*^9}, {3.70131495167629*^9, 3.701315067227413*^9}, {
3.701315135964876*^9, 3.701315160961586*^9}, {3.7013157617390003`*^9,
3.701315780584772*^9}, {3.701316015146089*^9, 3.701316044592758*^9}, {
3.7013164214838877`*^9, 3.7013164387079372`*^9}, {3.701316529337968*^9,
3.701316544416493*^9}, {3.701316665811548*^9, 3.701316716959723*^9}, {
3.701316813989583*^9, 3.70131681893974*^9}, {3.701316871175035*^9,
3.7013170581889544`*^9}, {3.701317126816621*^9, 3.70131715710603*^9}, {
3.7013173084627237`*^9,
3.701317383000709*^9}},ExpressionUUID->"54187145-c83c-4157-b979-\
bfad464f617f"],
Cell["\<\
Compute the catch time from the catch position and puck position.\
\>", "Text",
CellChangeTimes->{{3.701268593491686*^9,
3.701268626152341*^9}},ExpressionUUID->"9f01fa1e-ba95-43cb-a1f6-\
5aafe098a7fb"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"tsolx", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x1", "[", "t", "]"}], "\[Equal]", "xcatch"}], " ", "//", " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "physicsRules"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"Solve", "[",
RowBox[{"#", ",", "t"}], "]"}], "&"}]}], " ", "//", " ",
"\[IndentingNewLine]", "\t\t", "First"}], " ", "//", " ",
RowBox[{"(*", " ",
RowBox[{"because", " ", "quadratic"}], " ", "*)"}], "\[IndentingNewLine]",
"\t\t\t",
RowBox[{
RowBox[{"ReplaceAll", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "tcatch"}], "}"}]}], "]"}],
"&"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"tcatch", " ", "/.", " ", "tsolx"}], " ", "/.", " ", "conRules"}],
" ", "//", " ",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"\"\<catch time: \>\"", ",", "#", ",", "\"\< s\>\""}], "]"}],
"&"}]}], "\[IndentingNewLine]",
RowBox[{"\t\t"}]}], "Input",
CellChangeTimes->CompressedData["
1:eJwly1soQ3EAx/F1cnmwNbGkSIh5wGQ2hVI25Ukh3uXWFjlLu4jmxIvmUmvu
91jTsLMVyuVhSS6ZE8uDeRBNi5VaIYW0/H/Hw7fP0zerhW5opwQCQToJlve2
6s0Tr1XlgSgDSywrI7DaHh6Fab6YLXjqUrBQ6ggcwzaN9Zz/uNAV7HjRXsMz
W2nCANGfcZQIpc4NCeSyLXnwmTujoa57yQBDOwf90Ne1aYWx9V+T0DVUMAeb
c2TLsCzYaIc/1M09jBN3PsO+JioCmeHCf72ed6jdu/yAkdRHGUM0xQR55XtO
BWwZtymh4kLXA3Nr9by/byIXfDLUsNBtXjPME6cGpUbYK58WLhLTRQ+84eLM
ZChMUfPevR3kQxMnKYJRvVAJ1fvxFbDgkF2F2wvGdTjiHdOwRFXHJQ1vfQN6
6EhyG+EJrfp2E+sYP+UhWsWfM7vE3UrNLPwDwN/xTw==
"],ExpressionUUID->"81ebce39-3db7-402c-a8e1-f561114d8642"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"tcatch", "\[Rule]",
FractionBox[
RowBox[{
RowBox[{"-", "v10"}], "-",
SqrtBox[
RowBox[{
SuperscriptBox["v10", "2"], "-",
RowBox[{"2", " ", "g", " ", "x10"}], "+",
RowBox[{"2", " ", "g", " ", "xcatch"}]}]]}], "g"]}], "}"}]], "Output",
CellChangeTimes->{{3.701205982328815*^9, 3.701206016326119*^9}, {
3.701206103755189*^9, 3.701206111661851*^9}, 3.701206378729476*^9, {
3.701207165373866*^9, 3.701207174534396*^9}, 3.701207212392558*^9, {
3.701207242714292*^9, 3.701207356764719*^9}, 3.7012079081273108`*^9, {
3.7012079393093567`*^9, 3.701207981601611*^9}, 3.7012081231291943`*^9, {
3.701208195171369*^9, 3.701208202736259*^9}, 3.701208271701846*^9, {
3.701208312144616*^9, 3.701208347193103*^9}, 3.7012084430501223`*^9,
3.70120850294007*^9, 3.701208813715693*^9, 3.701208885306581*^9,
3.7012089464463654`*^9, 3.7012089911524477`*^9, 3.7012094647403927`*^9,
3.7012095171263103`*^9, 3.7012100055153837`*^9, 3.701210161912772*^9,
3.701210246360784*^9, 3.701210434760306*^9, {3.7012104657772217`*^9,
3.701210474700892*^9}, 3.701265330730483*^9, 3.701268635820822*^9,
3.701268848903417*^9, 3.701268915746669*^9, 3.7012689538944893`*^9,
3.701269824390822*^9, 3.701270093817029*^9, {3.701302798302232*^9,
3.701302823783186*^9}, 3.70130286596984*^9, 3.701302903237623*^9,
3.701303193209556*^9, 3.701303397258911*^9, 3.7013034284660892`*^9,
3.701303473018762*^9, 3.701303917352358*^9, {3.701304120626741*^9,
3.701304139976468*^9}, {3.701304246607183*^9, 3.70130427565919*^9},
3.7013056045931807`*^9, 3.701305689952866*^9, 3.701307359196422*^9, {
3.7013074172659283`*^9, 3.701307433725246*^9}, 3.701308152057753*^9,
3.701309790826342*^9, 3.7013100006170893`*^9, 3.701310088521813*^9,
3.7013127709182777`*^9, 3.7013151725148783`*^9, 3.701315795851384*^9,
3.701316055853512*^9, 3.7013167273087597`*^9, 3.701317082387824*^9,
3.701317169764759*^9, 3.70131740752356*^9, 3.701318851739861*^9,
3.70131902423318*^9},ExpressionUUID->"b233b456-2086-4010-8fbb-\
5122e1cdf359"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"catch time: \"\>", "\[InvisibleSpace]", "0.54469934871167`",
"\[InvisibleSpace]", "\<\" s\"\>"}],
SequenceForm["catch time: ", 0.54469934871167, " s"],
Editable->False]], "Print",
CellChangeTimes->{
3.701268915764415*^9, 3.701268953911633*^9, 3.701269824406189*^9,
3.701270093830739*^9, {3.7013027983194923`*^9, 3.701302823800673*^9},
3.701302865986886*^9, 3.7013029032583637`*^9, 3.7013031932321653`*^9,
3.701303397272689*^9, 3.7013034284863462`*^9, 3.701303473039641*^9,
3.7013039173764257`*^9, {3.701304120645235*^9, 3.701304140185775*^9}, {
3.7013042466270113`*^9, 3.701304275678359*^9}, 3.701305604610229*^9,
3.701305689970008*^9, 3.701307359217059*^9, {3.701307417284967*^9,
3.701307433741487*^9}, 3.701308152074004*^9, 3.701309790842198*^9,
3.701310000637896*^9, 3.701310088539949*^9, 3.701312770938983*^9,
3.701315172535178*^9, 3.7013157958720913`*^9, 3.701316055869829*^9,
3.701316727329529*^9, 3.7013170824094954`*^9, 3.701317169782823*^9,
3.7013174075388327`*^9, 3.7013188517608747`*^9,
3.701319024249013*^9},ExpressionUUID->"2541c00c-0a94-4a6e-83bb-\
03f6cd132405"]
}, Open ]],
Cell["Compute the catch velocity.", "Text",
CellChangeTimes->{{3.7013095547137833`*^9, 3.701309569024639*^9},
3.701318776409745*^9},ExpressionUUID->"c3d7cbad-ed5a-4349-8b53-\
66676c152766"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"v1", "[", "t", "]"}], "//.", "physicsRules"}], "/.",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "tcatch"}], "}"}]}], "/.", "tsolx"}], "/.",
"conRules"}], " ", "//", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"\"\<catch velocity: \>\"", ",", "#", ",", "\"\< m/s\>\""}],
"]"}], "&"}]}]], "Input",
CellChangeTimes->{{3.701309576489496*^9, 3.7013097164474373`*^9}, {
3.70130975455997*^9, 3.70130977451019*^9}, {3.701318769787636*^9,
3.701318842572404*^9}},ExpressionUUID->"93a6e825-7177-414b-bd40-\
e628ff4d8bef"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"catch velocity: \"\>", "\[InvisibleSpace]",
RowBox[{"-", "6.343500610861483`"}], "\[InvisibleSpace]", "\<\" m/s\"\>"}],
SequenceForm["catch velocity: ", -6.343500610861483, " m/s"],
Editable->False]], "Print",
CellChangeTimes->{{3.701318829087199*^9, 3.701318843352929*^9},
3.701319024366418*^9},ExpressionUUID->"6c6137f7-6b5b-4a97-96e8-\
1730f2b2458b"]
}, Open ]],
Cell["\<\
Compute the two constraints: at the catch time, the
(1) positions are equal and (2) the velocities are equal.\
\>", "Text",
CellChangeTimes->{{3.7012686400395117`*^9, 3.701268700362792*^9},
3.7012689594337797`*^9},ExpressionUUID->"8782d1ff-d025-41da-bba3-\
885fe6728baa"],
Cell[BoxData[{
RowBox[{
RowBox[{"con1", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x1", "[", "t", "]"}], " ", "\[Equal]", " ",
RowBox[{"x2", "[", "t", "]"}]}], " ", "//", " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "physicsRules"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",",
RowBox[{"tsolx", "~", "Join", "~",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "tcatch"}], "}"}]}]}], "]"}], "&"}]}], " ",
"//", "\[IndentingNewLine]", "\t\t", "Simplify"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"con2", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"v1", "[", "t", "]"}], " ", "\[Equal]", " ",
RowBox[{"v2", "[", "t", "]"}]}], " ", "//", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "physicsRules"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",",
RowBox[{"tsolx", "~", "Join", "~",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "tcatch"}], "}"}]}]}], "]"}], "&"}]}], "//",
"\[IndentingNewLine]", "\t\t", "Simplify"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.701268748731069*^9, 3.701268797130817*^9}, {
3.701304296576474*^9, 3.701304365632745*^9}, {3.701318872186399*^9,
3.7013188749179277`*^9}},ExpressionUUID->"f42ae3fd-f83c-424d-b14d-\
e221eb7bd540"],
Cell["\<\
Use the constraints to solve for the linear acceleration of the platform.\
\>", "Text",
CellChangeTimes->{{3.701303744318516*^9,
3.7013037611641817`*^9}},ExpressionUUID->"32208f46-24a9-465c-9e0a-\
92a2835d81e8"],
Cell[BoxData[
RowBox[{
RowBox[{"a2sol", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"con1", ",", "con2"}], "}"}], " ", "//", " ",
RowBox[{
RowBox[{"Solve", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{"b20", ",", "s20"}], "}"}]}], "]"}], "&"}]}], " ", "//", " ",
"Simplify"}]}], ";"}]], "Input",
CellChangeTimes->{{3.701265427216586*^9, 3.701265496350266*^9}, {
3.701269001479944*^9, 3.701269033188511*^9},
3.701318882510557*^9},ExpressionUUID->"668b32cb-6539-4a56-bee2-\
83f06ef2d068"],
Cell["Plot!", "Text",
CellChangeTimes->{{3.70130373128708*^9,
3.701303732318111*^9}},ExpressionUUID->"278f6ced-b2c6-4e24-b721-\
4e853a37d419"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"T", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x1", "[", "t", "]"}], " ", "//.", " ", "physicsRules"}], " ",
"/.", " ", "conRules"}], " ", "//", " ",
RowBox[{
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"#", "\[Equal]", "0"}], ",",
RowBox[{"t", ">", "0"}]}], "}"}], ",", "t"}], "]"}], "&"}]}], "//",
RowBox[{
RowBox[{"ReplaceAll", "[",
RowBox[{"t", ",", " ", "#"}], "]"}], "&"}]}], " ", "//", " ",
"First"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"p1", "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x1", "[", "t", "]"}], ",",
RowBox[{"x2", "[", "t", "]"}]}], "}"}], " ", "//", " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "physicsRules"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "a2sol"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t\t\t",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "tsolx"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t\t",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "conRules"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t\t\t",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "T"}], "}"}], ",", "\[IndentingNewLine]",
"\t\t\t",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{", "tcatch", "}"}], ",",
RowBox[{"{", "xcatch", "}"}]}], "}"}], "/.", "tsolx"}], "/.",
"conRules"}], ")"}]}], ",", "\[IndentingNewLine]", "\t\t\t",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<t (sec)\>\"", ",", "\"\<x (m)\>\""}], "}"}]}]}],
"\[IndentingNewLine]", "\t\t\t", "]"}], "&"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"p2", "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"v1", "[", "t", "]"}], ",",
RowBox[{"v2", "[", "t", "]"}]}], "}"}], " ", "//", " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "physicsRules"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "a2sol"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t\t\t",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "tsolx"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t\t",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "conRules"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t\t\t",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "T"}], "}"}], ",", "\[IndentingNewLine]",
"\t\t\t",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{", "tcatch", "}"}], ",",
RowBox[{"{", "}"}]}], "}"}], "/.", "tsolx"}], "/.", "conRules"}],
")"}]}], ",", "\[IndentingNewLine]", "\t\t\t",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<t (sec)\>\"", ",", "\"\<v (m/s)\>\""}], "}"}]}]}],
"\[IndentingNewLine]", "\t\t\t", "]"}], "&"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"p3", "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"a1", "[", "t", "]"}], ",",
RowBox[{"a2", "[", "t", "]"}]}], "}"}], " ", "//", " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "physicsRules"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "a2sol"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t\t\t",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "tsolx"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t\t",
RowBox[{
RowBox[{"ReplaceRepeated", "[",
RowBox[{"#", ",", "conRules"}], "]"}], "&"}]}], " ", "//",
"\[IndentingNewLine]", "\t\t\t",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "T"}], "}"}], ",", "\[IndentingNewLine]",
"\t\t\t",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{", "tcatch", "}"}], ",",
RowBox[{"{", "}"}]}], "}"}], "/.", "tsolx"}], "/.", "conRules"}],
")"}]}], ",", "\[IndentingNewLine]", "\t\t\t",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<t (sec)\>\"", ",",
"\"\<a (m/\!\(\*SuperscriptBox[\(s\), \(2\)]\))\>\""}], "}"}]}],
",", "\[IndentingNewLine]", "\t\t\t",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<puck\>\"", ",", "\"\<platform\>\""}], "}"}]}]}],
"\[IndentingNewLine]", "\t\t\t", "]"}], "&"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"p1", ",", "p2", ",", "p3"}], "}"}], "}"}], " ", "//", " ",
RowBox[{
RowBox[{"Grid", "[",
RowBox[{"#", ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameStyle", "\[Rule]", "Gray"}]}], "]"}], "&"}]}]}], "Input",
CellChangeTimes->{{3.701206115645893*^9, 3.701206179833016*^9}, {
3.701206223349931*^9, 3.7012062420099277`*^9}, {3.701206289700571*^9,
3.701206315671361*^9}, {3.70120838768674*^9, 3.7012084067798853`*^9}, {
3.701209101900625*^9, 3.701209118749516*^9}, 3.701210097903748*^9, {
3.7012655648468513`*^9, 3.701265579085938*^9}, {3.7012690433176117`*^9,
3.7012690714355164`*^9}, {3.70126917670938*^9, 3.701269344365143*^9}, {
3.701269431285795*^9, 3.701269433555616*^9}, {3.70126969483412*^9,
3.701269737474695*^9}, {3.701269912099865*^9, 3.70127001231916*^9}, {
3.701270207760277*^9, 3.7012702219903917`*^9}, {3.7012702754356203`*^9,
3.701270280537401*^9}, 3.701270323694713*^9, {3.701270357551046*^9,
3.701270389579379*^9}, {3.701270575117298*^9, 3.7012706552562113`*^9}, {
3.701270685752069*^9, 3.701270820916663*^9}, {3.7012708513820066`*^9,
3.701270906518446*^9}, {3.701270936868743*^9, 3.7012709885647707`*^9}, {
3.701271048816807*^9, 3.70127109836075*^9}, {3.7012711465801086`*^9,
3.70127120189485*^9}, {3.701271395060523*^9, 3.701271455871128*^9}, {
3.701271505213942*^9, 3.7012716365256357`*^9}, {3.70127180943922*^9,
3.7012719744557867`*^9}, {3.701272016024391*^9, 3.7012720525300293`*^9}, {
3.7012722227603416`*^9, 3.701272227004343*^9}, {3.7013044110581303`*^9,
3.701304429029118*^9}, {3.7013069639703093`*^9, 3.701306972126896*^9}, {
3.701307059803638*^9,
3.7013070628030148`*^9}},ExpressionUUID->"dc8211f6-d964-443e-b264-\
6910f9386ec2"],
Cell[BoxData[
TagBox[GridBox[{
{
GraphicsBox[{{{{}, {},
TagBox[{
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVyn8003scx/HdMpkfm+2L9fuSFIrjiLj58f5Y97qnQoe73LvTjaUfN1qW
X0nnqkWXkYg6Ok1XP2RIdE1+1o0yIbHUlaGwWbT1bUj5UW3utz/e530e5/W0
ieCHHFhEIpECifv2/1ZHp7eS2L7i6Sb9wgKGppedj/mF4wo+ApWglrClCfno
Bg4LhnbzZTzC4lTgMzkh4E2q75HrMTTR9CrajBMBR3QWhyt1GMLCyqONOLFQ
2KGb3PkFQ3YVeVoyJwX8yjK38WYwVMlOqzTg5MGZv3KdjHEM9Vfb+eSsLoKY
6/aDD59jaN+RZy6jf9yG/A9jRxrrMFSzZSpu+0MJxPawj5NFGOIZdI0dqqqD
GaeY027HMGQ/ljXiGHgfrlQ7+h8KxlDnY5lnf3EzSKzCDw/YYchG6xobv6wF
DL+71Bo+y0BJNkZ8RUQrpId2RknaGai8Ls2j6nUbyFe5RybkMdAwJ7ElxPkJ
lLiXqQ//zkASmV/zjrinsOeqtxlrLQOFl9YIS9TdYN25vqBplI6EjwMzNaJn
8CAo+OOmm3QUEGVZK+nvgZaDpTm3dtPRyOw2kZjxArQvhPUPzeko4awHN3Xz
f3BUK6281GaOEp/Nn6XH9UJY9pqYG/Hm6MSKhMtC0Uuw+G1G22NrjjTMVtOq
gT7Y4p1RZJ1LQw76055ky37YR2YmJ72kokjN7E+sLQPwylcjqrChIishq8Hl
+CAUDxQ3R4SaIekGf6rR9VfQLdV+aMo1RayG2hUm0tfgWlrfkffEBDnNfclu
WhgClsyJyX5njM6t1sU4YyNgibtKfrQwRg2XD8p6JSOQ/X2pQm5LQV0ZhpQL
OxUQdbEuZL+LEVJ+TamWKhRQxtooveO/BFW0q813CpSQ5JjouJhliJKYTsOB
FqOg/1XYpvyZjDYOijMiikcha/gTIyTAAOXPGo/LWCoI9uKrPNwWI9KlHTVV
vSqglTthLvaLkE3Osc14/BtYWyLrYetJiGV80r6AMgbc4F3WkkcLsOPzvZnw
gjEoXHEqxCxdByZbVYnJP4yD1dYPywtMv0AnVR1J6xqH7E/0R7OVc+C3SU79
zHsLkiUezEnaDFx9qsv5TFHDzY9ZuE/0NOjfLpzmX1HDGjv+vmR8ErAwfJ2P
lwa+zvtKIQAHh9Aa71MyDdy+g/uLFo3D+pa7zn3cdzC59ECQQaMCBoWFL9L1
78DzZF59X0sf5PTsV9/OxYG0UkCjB3SA6syhKZ+LOLisvug3PN4Onp68+e58
HARL5eHFqe2gLIyjTBXg0PxxgrvsXhu48VIc3MU4cAPDE645PAa54bXIfxuJ
Ptl73JHcAtbeg+quUaK/q3i9l9cA8RNDU2FjxF6/JGj+ej103FDOT7zFAZWf
yxf01UEsRUNhaIl+b8M/YaxakL6ccwidI3bqeQqHWQ2RMVZRQ6bvgdQRL8r6
swwerF0ey6cR7n6QVvumBBjyVSdIjPcgqG63bQ4Sw31fu8w1TGJftfJorHUR
UE3dbh20IaxMKRKfuQwRTR6SWVvCuIXwEzsf6mK9GoXrCNes615sdwG4/awn
tzYQpl7Q3RdmwN0s/+dezoSta57vWp8KFLR94KkLYW5F70BmEoRNByr3bCJM
GmbSsiJBIg7WaN2/mcReqhL6/g9i302c
"]]}},
Annotation[#, "Charting`Private`Tag$434#1"]& ],
TagBox[{
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV13k0VfsXAHBkno6MIameocwaJNM+oZQhHjI0KJ5MiV/JrBIRDxlTmTMX
kXm67r1cYwg9ZUyqS+gaQoYM/b73/HPWZ53zXev73XuvffY54OBpfp2JgYHh
FCMDA/2ePuPxqJXBUgcRXXz4smjcLQvbI8CDY+x0C3Gx/E/eVheUPyvtp1uF
Q1f2dZgR8Nw3PEt3fih4itiaw4Umk2C6K5nGDW0WrOCNgVQH3c0PgmSeh12C
too6SUZkl2Aexjmea3C6YCOc7gXSmAePrQMMUHq36fb5UzSmmOsI+4tkHzIh
b+kEGp5fcIL+HZroLuTQe4a1HhquEH+Ni0Q3J1FUJjbsBvDc9vBiRo7fnk4s
7bsJtAHGEyzI0fvGGKZ5/gcjcmUcrMgCdkUe7La3IUqNf4wN+eN2Qt6ze16Q
o5w6yo6ckh4wdij3DtzOnp/hQN7/6ZzhuQUfmAjMOcKNTA1SfTAs6Af/SY+5
8yAX7BWtddXwB9m+mCpeZKXL09L/hgXCs2LO27uRlzZ7L4sVBQHnwdeT/MhV
qTWJr/ruQvg+X2dB5IyblOBJnmDQParyRARZ+nXCPIttCNwM2Ereh8x6l5Xz
3Y8QaP+Y5b8fedo4QDr5Xijcbe90PYhcTLO/LJP7EPJo1rdlkI8oqL49sxAO
AStyB5WRBbdyJ3lDHoFJdp2HKvJq1x7GQcEI6Pp5uOMoct0NBnVnjUgI2Lry
Qh0ZL+rNexQWBcc8h2d1kQ8G6jWZ7okG7mGNtNPIzEY1YyJF0fD154jtWeT2
2QyBwr4YOF4TtmGCLCtUg1N54oALjDpskUssw0uYbRPAq5YS74X826VK6Elh
AsyxlRj4Ip+5Sw2SXk8A6ZBAzkDk8TxdozNPE0FS1qY6BJl3bef7ow9J4Bp2
KjcB2fO57wEu86cwJSXZXEmvx3GXpN1GafAl8KIZIyMfHrT0dPNFShrMRdr/
jxW5g7Xd4chsGqif5knhQr6mLK1qEZkO48uzHMLIccFfepLaM+BJ6LSNPLLf
7te7uLOzQHNHLd0aebhCWjt2Xw68o3lzVCOT7VaiK/VyQGAxnNKAnM9BGRt2
yQGGasXQJuTbV68FSVXkwF9s0/w9yJxcqQ11BrmQL0++RUXWcuDToP4vD/Kn
HogJMqH8822qnaQUQI+700Mf5H9u9ql8cy6Gi5sxYnq7+PCHVcVrJtHFILco
73UOOXc7glj7phg+jAt2myJTY04ZP94oBgc2v3uXkR1Lyp1PRr2GH4JW37zp
XkjKiC0pAasMlrRC5IpaBdaMgDdga/pRm4eZD28ZS3H9L/oNPBrD/QWQBxg4
etgz30CXmX+5KPLK2clEL8obOGHMvE8G+dhw+oFz3GWA77swqINcucGrvZJe
BulFPk2eyFUaP70Mm8rBzuzK9DvksZeEOc4P5WC6Vn/sAzKTaIRz13Q5zMcn
Bo4im63tu2TMVwEuW6br35FpFca6569WQL2EUhEDC6o/xUI+8+0KEDTRm1BB
jpO8+tr2ZBVUqy98iEKueSwnK2ZSBRasnng88vj2r6yRa1Vw8rlWdjKywlh0
0qWIKhByvWT0Arn9WX3glcEq8Ds0oVKNvLNb2NDeuxrkv3QeGUd2Z+6Zcimr
ATtBrWsyrKgf7qqcH6TUQHDJrJYccsCu1NUzH2tAM0gPU0KOYHJlld6sAS/+
F0nHkXMZWGS+6NcCsbNTUh9ZnoGmaGZdC3eyHhUYIJf/eX+c5FoLlW6GUkbI
5J2s0+mPa6HvZPTW38ijW1rXbYdqQceBKH0V2WHrr5sds7Ww19vewgF5epPT
+8R2LfhoOnpfR179PfRQ6GAdpOuqJd9A5t+4k9t/ow7ujnSe9UU2/FX87dyf
OhBUTrsajdy/kvijdnc9bNZGdT5GtlkJWJaVqgc9nziZeGSn5bO7WM/Vw9Js
eN0T5JCf1IPNCfWQdXkSz0Dm+Nklp5pXDy4HtE5lIcctlh/JqqmHh8NMx7KR
MxaCde+N1UN5aMxiHnLd3F4HDZkGaLh6gVKMjM/tcnup3gBrdjOWJchttNlb
e4waIHD32aFS5IEftQ9WPRvAdJG/shz50o/MyOshDZDefYG7EvnrbHj8QFID
yBP4rKqQF2csX5TXNQDj8bTGGmTfGc2XB7ob4LSH3mgt8s70wbK48QagiPHN
1iGHTXPU/VlsAP+EuZl6ZO7pRbLHLgI4KraPNCAnfh/s+CREgDC9CAIBWew7
sc/4EAEGFfbGNiK/mMobatAgwMVTHuZE5ENT0RNyJgTUH11ZSfTzqPTvSNkT
QOAVTy3djoFCEpLeBHjnFWhNRmZqs9UUjSRA849nVLoz+TJsBdIJcKfd6GoT
stalr748ZQRwJ/i30z2SJ5PM1koA5WB2iWZkv0W3SsZhAuh3fLpKt7Bm6ftN
Gnpu+DmW7sqw5cVfDI3g17BUTLd53wlsUbARcvq3q+leFAtSnD3UCOq6U6/p
jrlONqJqNUJDc3w83XJvmN3GzRqhkn3Knu6O32cjhhwboaCzYx/dTqdj8t/7
NYJ4g2QHfX/Mcf0t3dGNkJzQd4Xu7BGhb21ZjZDO0vSZfj5c+iJjU2Uj1HR+
NKF73DNDsqGjEdyS1gro8Qms/6pdNdYImuIc8/R47mGRvVy62AhvBH5K0l1t
eiPgJTMR/j76RJse/yXqcnW6AhEOEws16fmKU1b/8BQngnvSN3F6PhUDgpbj
LYmw5HzrOz3/LhiLSngQEUbH9uLVyKwXz50PjiOC0QxLD72ecnNj3ANyiSDU
OaRfgfz5pPBLj24i9A29X6HXY9DDi+0uE0To9mpVoNerWG/GpMMKETRq1U3p
9WzlKHvQei8JHgqoWxQir5TcwP9WIYH7k9hj+cjxG6V2Rvok+JS88ycHufux
eiq4k8B7vs4yE9ltOKjuZDAJ8kv7P6Uhs0s1DR5NIkFA21OzFGS9unOChwgk
kOhqXUpC/nTr9Rl2VjLscHbKRCIrPO29wMJHhq8WXr/D6P2J8NORSYwMzzI2
qkPo8WRTC91SJEMcpjobiGyZRiQtXiCDhcYNtZvIOU0T7+auksHFXei8Kz2+
U0zjs65kuGfcaULvL3GqBlvUu2Sg0KjMV5C72nrVh/PIYBfBZUrvXy4WVXkF
pWSo9JKpP0OP70QKv08dGUzv2fHo0vO/cZ3G30OGwpvNN9Tp+ZTfyjReIYOx
+AsWKWSL2i/c4jtkkHamleyj16d+u/8MWxMsvo0BUXr/tEuwCBdvggorT2Fe
5Ky4Q2xk3SYwmlx5uor6tY4E753Hxk0gYK3uv4g8+nJ54rJVEwQMc56aRRam
EOs3XJvgXvRG6CfkqF+WHkfjm6Bh9+mBZmSfiw8+5H9ugs2u3ogIZMHvTrre
M01AHb7YHoxc5mVcqrfcBB0zU7N+yLRokcgJ1mYYjMqYcEG2J73WElNqBjf4
L9QA2VhqJCcmqBmcnsYk/kHfs5k3JL7L4c2w3/q+8CpyuHbeXbm4ZlDhpAbR
kJus/mfdntMMBW3Zy0PIapGsXIxdzWD6Ryv8DfKB+SO374hSIDRbUu4i8ryu
jEzKQQq8aD2dZopMeCo6QpKnANVVc0Uf2eoUgy6XDgW0b+lfUEaOTurZne1A
gb/Enw0zIa9puJT1FlGgdCRlOBfNAy2xl67/qqTARVbdzGfICdTzouJECrzL
8j4Xjazw+PgDpz4K3LmiauSF7PCF6e/tFQrkPWllxJF7HqUvyum0QBhD9eEB
NL+kjMXlmhm0wDbva6U2ZBfVhzY+Zi0w4T8nXIvMNOpGbnJoAcusjbhUZHUl
9TibRy3Q08tx2B45Z+C9cngfWl9jNziF5iX/A+yeXxxaAcsLyRxF8957cbmS
bvdWmNS57NSBLCdsPFfj0wovl/3Yq5DHOONuPP63FbrKBcdj6PPsioiLZnkr
cL1k7tamz9PtsvZPGNvAnPm+uuIfDE9wN7A4l9UGmc/eV1htYfgPJ9eEY6/a
YEExskQGWd8+ql+ysg0mTlvZrm5i+K8Lvaar7W2gz+ZETEK2AWvjnIU2UBWo
J/f8xvB9/M6nt3XagcNVxl9lA8OLasJPlH1qh8TBLLOaXxh+LKC6cXmqHc4L
er0LRiZoTempLbaD7F42RkPkd02nzRqYOkD9d3fo6AqGL3Uxu7bKdoD2D43N
38sYrj4RkjJ8qwMiA9ei5ZcwvJX9/jYjayccki8XNp/H8PNdJaH6WCdEpSeM
7kb+GDPO8WhPJ3jqrZv2z2H4NL+OMLd8J7QlF50xReaW2FYSNusEXmsJZwMa
hpurBl6TS+kEwp4w00OzGP7Z1pdirvQWon2knhdNYnh1qFuB04m3QM3HfByQ
H7++EhWAv4UJsVQGUWQtRn2LbPO3IDa3IhFGxfCUQr5vP33ewqbQP9623zDc
cu0lUzzpLeCWWXeWJjC8I2nsVK9ZFyzZXsiijmJ4JrFX+pttF7xQ6KPGIftM
N3OsOXRBofZWvxaytNbL/n3eXbBb421e4giGh3zztvd43gUFvjQl7WEM1z6C
PeD52gU9E+Tc+x8xvLz3FNnIqxuYda9xNvVhuFDmP8rSd7tBfFCW6SKyn0dY
xk54N0h4W8Ys9aL1PJ1BZSndYPmXwJWDyB2GZidFmrvR/1z2WFAPhn9qtSv/
ytcDzIlzyhJvMZydEJjrX9IDiRVGbRwUDL9aWBVRMPMO5h1/vnpUgfKHKnVo
6R045V2ncCM/HBT8xb71DkRFLtyOL8fwV6x37N14e4GngTHxeRmGrzoe0VA8
2gtCIDKaW4rh0QdKf5QH9cJZtisOBUUYftnEUvYzWx9MCWYrXcrB8Ig2k39n
U/oggDO84048hotMbr2azOwDnSXepP44DM/fVdw1kdsHe+/FDSoit+CcPIMl
fcA0WtxKfYzhDA1tsZTmPjAXSVY3jsZw/1J4kjbbB9oc4UaMjzDc7Zlq1nmN
flgxqqllCsJwYzeh6vLhflAV0zSwdkTx18oPSx7vh4fOimJJ/2B4Le+JCwHf
+qGg0vtKnwPKV4XNyqm5ftCk6h4zsMfwnc3UI/0M78GwzFVCyQ7Dy2IOli7I
vge+zrryCWsMFy5TLlTweQ/mkrOxg4YYPrF2LiWf/z8gfiecZVTGcO+oE9dC
1QYgbUvzY/AKL+7btxG12+sDJEYl/ia94sUDxL2fR6R8BA3NsX9iLvHisyKt
3GUjg6Bl8GqzeIMHP7zzQJ1FaBieeUtnPI/mwV1n107raoxAWNaP6hgxHlw4
QrdOxW8UdE5c/EOM48Zb5M/wsr8YAxeurA/CTNy4bl21OFfLJ7BUZKf6unDh
iuubj0l/xmFfa0hMcRknHrNv+5aSwATke8uz6a1x4HXPnXo/lE+A1oCB3jFx
DrwnkpUj0fQLOJKcWQ6psONft0IqWr58gX+Sq17p6rHhrztm+EyDv4L+eFK7
tRIr7i+i+NlE8BuMWei5Xt7DgiuM5kc65H0DNV+mgaWVXXjyGuf3Xl0qJKao
tQ9mM+EMT42qyj5QYdl3IPKwOSN+INZHjXZnEqRyC57HpvwBXc57h1I5pmAo
MaacKXkLjH43rF5NnYKk784jVK8N4NKj+t49+R24qwfOWI78gi7eGVes5zuQ
1w1kgo2X4NTRId7f7tOw/4aLb6Y3DTK7t2N/c8xAsNrTm6bMVNiZ/vPAM20G
FjUlgeg1CAJ2NBltzVkgJwcfCVMoh8NWVVr3e2dh/+1jPb8Zu0mylEqlwWs/
QKUSv9cWNkEajcj479HOD3BJzurnsvlBiu13nCmOp4HZ0GfSn5UlEvWhy0/t
JBpQt1nLJHmWSerq7hvvkmnwcL7mrL70MulrhhfHz1QaKHy/fzP1wjLpmHvI
4eP5NDBWkX7+oHqZNMSa5dpYj95fLR5T9F8h7dcanen5RoO9qwtHOZhWSXcW
xn/aTdFA6k3Ef0SxVVJn9teNhWka0CYXZf2PrpJuc8xy8M/T4E3A+uKm4yqp
5eP6Yat1GhTq2fNpdKySXG8Ju41zz8GY7IPpZ7FrJKKU2G1PbA4Iy8mcKYVr
JP4hiQAG/jlIE8iczmxaIxF0pP89KDIHz1hMR+qW10i83MdeOR2Yg9riV1ky
NuskB9KJ8rW/5uCyQF+Jya11Us1tzfoImTlQ1/AP8v93nXRtWPftK/k5iL4n
afOZsE6qjD7zXlNpDvjWGJxFP66TOHDDkW4VtJ9JpRM2C+sku2WTr1eOzoGf
n3hnKvsGqTz/79n543NgM6YuQT2wQfo/CK7uLg==
"]]}},
Annotation[#, "Charting`Private`Tag$434#1"]& ]}}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"t (sec)\"", TraditionalForm],
FormBox["\"x (m)\"", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{{0.54469934871167}, {3}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 0.9128336688884662}, {-1.5707741872299916`,
4.99999998137074}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}],
GraphicsBox[{{{{}, {},
TagBox[{
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVxXk01AkcAPBJwxpE7ijH+EkmwpKc41tTa5MsWdvb2SdZifREjpI22SiJ
EPUiR6zK7lPpGSGS33cXFTnC5qbBGGbMT2M73OzuH5/3YQaEex+XodFoHv/5
/wJR2NUmmo8Lu1z5axpNSn7UuRHxPdcanL7ar7RbUUpqKsqeNuNywOHIpcl4
LSlZkgjh2lxvsGV8Klgzl5IfyKGwDdwA2PFzv8IaV0qq+z0Mk+dGgp7qfcFK
hZTc+jhrRpabACunHXKWgmfJMp+kMjo3C15YBa596fiH7K/Yys7QvwfX1nTl
44Y+k8dOvbUaD34E0TeDa90q58lKx9moA3/yIF13PK8lfokMpbcJT5RXwycp
WT2QtEqaCq/zt3vUAdv1Tv2mxzR887LDvv8BQolTYr2irQwyZ6wjo3Ua4H4p
vaevcj3GMuXDRwOaYOeyF6d5iyw+rE6yKx9+BSc/t7mvK5bD99yYBm+LFrDs
1Cz13SCPvI496B7VCqkmnw2yIhh49I/K5N9F7ZBOyNqofFLA5JceKeLct8Bc
z8994quEB09qVvH6O4GbMl2YPb4B+XNuuSVq3WCaml7HPaaCZ1Lt/BN3/Q37
7FZvFwZuxJi3C6mqUe/g5QUP/SoTVTy/+cyd5NweyLSR8RoZVEWxdpNS+UAv
WLp4em0vUkPW6iV7Wc1+yJE94Tvur44h4rlvOI4D4OYiVCvT0ECtZE6N1blB
aG1Zzs7v1cBGM1dl+d+GIOf1uVf5aZrIqanarNg4DFaJKKOwWwt3zC+lk2sj
kJdZpJS3ThvT9FciLNT58J2qENlV2lhzJ6jjHY8P3YKGvfTzm7Dtmhzjpuco
GJ851WXnqINjywkVjaOj8OLsBcU4SgcfvxZt9Px1DFithLrwiS7Gau9476Ex
DsNZVk3+xzej+WDJtYAH4+CrxUjcr70Fb88pTHZwBPCEilXx6duCtGz3yvJ3
AnDb5eUacV0PmRlnd0miJ6C6q96d56mPHIWLpnkMIYTys5bocgbovvj8y9E8
IUhKrasbnxmg4l5BTJzDJBQFVhr6sA3xjbIoRKVtEsLM6c/bsw1xj02f8mLo
FJjoFzoPLhhiYetKxiJDBJwZg336PzFxdWrtUni+COgx3YbiCiaq+0lM2E5i
KGN1C77VNELW4Urn+A4xrNySvWhx2gi3NTy16PWfBt6IXoF7sxEOJt/tvro6
DZ7eCfcWWQRmdAaKHmVKIPOiTrz1ZQIFl0/Msm9JIKjh+eGmKwTa24cutN+W
gJO8n8WPVwkcuxvFmM2TwERm8XBcCoE7QxNYtiUScHhg5tx8g8A+uaKQF7US
GH3DXjhaQKCh86CobVwCljoBUWlVBEZ/GJn1E0qA7kd3N3xGYHPx2MKHKQn0
F5cYVdQQGMkQM9RmJJBoPt3ZV0dgY8886/C8BHoh2sq4gcCQCK2TI0oUxAcl
UbUdBNYb60aGq1Dg89C0yaOTQLU+vfM0NQpY0pZ8fheBdS5bU4y0KeiOVTko
10OgstLO0iAmBdvSckoPDREYQNrx5ggKljsdEwTDBFZHOtUmm1DQqTXMjXlP
oH8/p6XUjIJfipiMgjECn1537XKyoMBzooFvKSCQsfvAQKsVBcbbg579NUGg
30ePsSM2FCyGyd/4YZJAXskh8YwtBe0VpcFTUwT+CxVzaqE=
"]]}},
Annotation[#, "Charting`Private`Tag$548#1"]& ],
TagBox[{
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV1Hk0VW0bBnCVRCQzlcgYGV6cSpSuSCpDklIakBCSEm80kEqlkiQvGULF
MXNmQ2pvU4OMGSIyZAgdSZQp9Z3vj72eda21n/17nrXv+1ZyPbPPfSEfH98X
3vP/9fGw760qvv1bS3qc/VUZvlsnVkT52TsawGhYZNdDGWtICy8+q+VoBolA
04po/qOgXscZWcd9GODKNoz2nMIY0em7zNEVCTfmJhvjL0HSKcdX0PEcIpY5
mdOF70ItL/rbYsdr4Lz57n5pLB4CwQJL675eQ9WdL0PpuQkYsr6oFhtyHYqq
rUYsz0Tkco8fVU8LA60zYcflT0kw0Navthi7CXP3cv6S4hRsy6lPv3XjLuRH
KsXOJz9F/v6b+fyO0ciUCvaWLszArCdb+r/MaMQUGVgcXJoJi+D+y2rT0WDU
tSr+OJqJrnQzK4u4h7hjN1JjwJcF0ak/X261xCCDvlW0Z2s2zsQHKgnvi0NU
R5LOSFIuSvOo4YlP4lD41Gjo+UAuBMtbxrTG4yDRWZk6qJOH1BHKS+uoR3BK
pwrvLM1Dw+bvhyPr4uERHfeG0pgPvS7PGHGrJEidijvTdZqGyz/i5p4kJMHc
xXHL8ns0vBF47WowkoTISIlwbg4NLv+o6dvffgy/WO+k3CEaokJ7a2NeJ8Pb
nl5k5kRHkHjeIpGnqdh4LZ54ZcRAcqK5YfPbVPAL1V8i7BmoVOv0ThpPBffN
HMftNANixsLvtU2fQHDSOJuVwkCmq1eqTc8TBE3ZhnnzMdHOVDO5r/AMesxm
AV0GE6TTZARr+zMcrJDY9KCKCapQRWe75zPkDKYl5rQxcc7Z5bIq8xk+elTN
LP7DxFLhxOfFO9NwzGZK3G4HC9/ZXsLdPmn4/qul5bQDC60um47wR6eBxhSs
MT3JwjNOy+yezjSUeHjbLg9nYYurmHH/2XT8YCgwtr1iQXlZ922h2HSM/3ws
KNvCgmBRXrvu83SssfZ7kNbHQvMyqwsXFlPBbyBlPPCXhdPFN4pEE6j41mf5
5fd6Nva77RdcT1BxmPRuiDBlw3i5yiHHfip+FXR9bbJhQ8CdnHqmmwHWm/Li
W+5sJIvNbTSqyIB9zyX6jQdshD1/e9NpKAPaDlt06hPZ8PZ41Hp9WSY2dO/t
qE9nY2PphvN1BzNRu+583a8iNuRP8r+auJyJY6M3JVeXs7FQokl6xdNMrKz4
eme2mo36k2fZJ7iZWJNJF+voYIMjgcW3xbPgUSih2NXHRtKLZQfyN2ahs/21
86OvbHhK5kxOh2ZhzyHdIINZNva8vGCuQM2CFavbVmIBB+u9dsVsf5eFQJUB
x6wlHPARA5RI6Ww4bObyz0tyMOjFus40zoZQ/2h68QoOaqSuN7U5Z2M4ZfsF
HUUOGISdyp+wbMz6joYcUuUg3nuNv0p2NgztvnKMNTkIlR4r31WfjVQLE6Vm
HQ48yBcSvpPZMLbte6FqwIGBzBFG0dYcTMRrRX414kCuTHNh14kcSHbWlh03
4eDPqWm7RbdzcEK/cu39bRz0y7x+opGfg654UdJ/OwfVZf+N2zTl4LZ03p3l
FhzQfNxM/adz4JKWcst1FwexspQHj1bnwsNikONjycHl8gW9L8xy8WguVE7X
moMTpxv0+k7mYrriTC7VhoMwdu6UTUQuCqf89Br3cJA2H/6yiJYLZ9G6ErYt
B5U73G+otOTix5Iwq/17eee5Z2odOZOLU/0PP+fyMn/rasmZ1XmofTZ/heBl
VYXZ9hNmeVhhUaYSwcvmHq2pdR55sH3XVSvBy275jJNGd/NwmuIQYs/7ftiv
SN20gjz4h6zdsOf//tZTP0Wb83Aid9+PhbzzVd7cWXphOg8mLz6w/ax4fp3K
9X75fPylca4k7Ob5snyWtqb5yLw1Zhu8k+c7d4qVuOdji+k19ZU7eH5G0QfV
O/ko+uS7yM+M54/FJN/Pz4fiMfbgVfB8Qz/32ff58CUONFhv4flXbLTdp/KR
zr+XbNzE819rTtSvKkCVdhpHbAPPXy5QYrytAA2G+5hC+jz/0OfQdLcClKsd
5pRq8/zUlzvFbhcg+ddzQlODA3e9wJaBxgKImt4b0Ffg4GaQfdLeXwVIK/m9
oFaOw+ubOPqxZTSoyr5SVebVn79GQNAbfRo+BXkEzwpwwCzSFki+SINJ96eL
J3j1XdmZ4NUUQcOqs/LVdbz6b+YTqhVMoeFzH0txktcfk7sGHvpX0LAuYOKT
zzs21rc/VtotQkemYQZVJoMN83nhGyEKdNR1szT2Peb1u9LFIaYeHZ+85ek7
H7IR4OVQoHCADrbmTLNLCBusGVGTycd07LUc9rSy4/mrg1M1aXSQQq9WH9zB
802/LnIup0Mu93ebvBHPv/26+u0gHSHxga6tijx/ZeihlH8YMJZNK1swwgLb
eNzfsowBp+QPNCM/FjqzSkeXtjAgJ/7eOtSZhYUrwk++G2JgsKn5QYANC3un
FI5YizGRuXtCxkODBS7T2myPMxPcnw+Xnf7IhLJOpti+eSYO27nlLv2Hid1J
/nckxFkQqepr05Jj4qww+JtUWWgIP5U/y5vXL4dbpuytWbjGF7P/SSMDjtRF
3QcSWXhK23VP4gwDUYrOeY68e7ySNKWFJdBRGLlu7Ure3DsbvuN0aAgdXfM/
Uz+6sKFhs69J05UO7c6ImCPhvPdfhSXc0KDj9aOSS8c+sFF+0Ub6OJ2GP+Iy
lsf/5WDLu44g25MF8OGvHfSkF6LtXsuTL7y5MLGI9e1DRSH2lv8NOJWXjYuL
En9ZtBZiMtq23dk9G+ELvQTU5grBJ+RyIKEpC2l8i9V7zYtA7jRf5ZCViY7f