-
Notifications
You must be signed in to change notification settings - Fork 1k
/
api.go
1203 lines (1051 loc) · 40.7 KB
/
api.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package raft
import (
"errors"
"fmt"
"io"
"strconv"
"sync"
"sync/atomic"
"time"
metrics "github.com/armon/go-metrics"
hclog "github.com/hashicorp/go-hclog"
)
const (
// SuggestedMaxDataSize of the data in a raft log entry, in bytes.
//
// The value is based on current architecture, default timing, etc. Clients can
// ignore this value if they want as there is no actual hard checking
// within the library. As the library is enhanced this value may change
// over time to reflect current suggested maximums.
//
// Applying log entries with data greater than this size risks RPC IO taking
// too long and preventing timely heartbeat signals. These signals are sent in serial
// in current transports, potentially causing leadership instability.
SuggestedMaxDataSize = 512 * 1024
)
var (
// ErrLeader is returned when an operation can't be completed on a
// leader node.
ErrLeader = errors.New("node is the leader")
// ErrNotLeader is returned when an operation can't be completed on a
// follower or candidate node.
ErrNotLeader = errors.New("node is not the leader")
// ErrNotVoter is returned when an operation can't be completed on a
// non-voter node.
ErrNotVoter = errors.New("node is not a voter")
// ErrLeadershipLost is returned when a leader fails to commit a log entry
// because it's been deposed in the process.
ErrLeadershipLost = errors.New("leadership lost while committing log")
// ErrAbortedByRestore is returned when a leader fails to commit a log
// entry because it's been superseded by a user snapshot restore.
ErrAbortedByRestore = errors.New("snapshot restored while committing log")
// ErrRaftShutdown is returned when operations are requested against an
// inactive Raft.
ErrRaftShutdown = errors.New("raft is already shutdown")
// ErrEnqueueTimeout is returned when a command fails due to a timeout.
ErrEnqueueTimeout = errors.New("timed out enqueuing operation")
// ErrNothingNewToSnapshot is returned when trying to create a snapshot
// but there's nothing new commited to the FSM since we started.
ErrNothingNewToSnapshot = errors.New("nothing new to snapshot")
// ErrUnsupportedProtocol is returned when an operation is attempted
// that's not supported by the current protocol version.
ErrUnsupportedProtocol = errors.New("operation not supported with current protocol version")
// ErrCantBootstrap is returned when attempt is made to bootstrap a
// cluster that already has state present.
ErrCantBootstrap = errors.New("bootstrap only works on new clusters")
// ErrLeadershipTransferInProgress is returned when the leader is rejecting
// client requests because it is attempting to transfer leadership.
ErrLeadershipTransferInProgress = errors.New("leadership transfer in progress")
)
// Raft implements a Raft node.
type Raft struct {
raftState
// protocolVersion is used to inter-operate with Raft servers running
// different versions of the library. See comments in config.go for more
// details.
protocolVersion ProtocolVersion
// applyCh is used to async send logs to the main thread to
// be committed and applied to the FSM.
applyCh chan *logFuture
// conf stores the current configuration to use. This is the most recent one
// provided. All reads of config values should use the config() helper method
// to read this safely.
conf atomic.Value
// confReloadMu ensures that only one thread can reload config at once since
// we need to read-modify-write the atomic. It is NOT necessary to hold this
// for any other operation e.g. reading config using config().
confReloadMu sync.Mutex
// FSM is the client state machine to apply commands to
fsm FSM
// fsmMutateCh is used to send state-changing updates to the FSM. This
// receives pointers to commitTuple structures when applying logs or
// pointers to restoreFuture structures when restoring a snapshot. We
// need control over the order of these operations when doing user
// restores so that we finish applying any old log applies before we
// take a user snapshot on the leader, otherwise we might restore the
// snapshot and apply old logs to it that were in the pipe.
fsmMutateCh chan interface{}
// fsmSnapshotCh is used to trigger a new snapshot being taken
fsmSnapshotCh chan *reqSnapshotFuture
// lastContact is the last time we had contact from the
// leader node. This can be used to gauge staleness.
lastContact time.Time
lastContactLock sync.RWMutex
// Leader is the current cluster leader
leader ServerAddress
leaderLock sync.RWMutex
// leaderCh is used to notify of leadership changes
leaderCh chan bool
// leaderState used only while state is leader
leaderState leaderState
// candidateFromLeadershipTransfer is used to indicate that this server became
// candidate because the leader tries to transfer leadership. This flag is
// used in RequestVoteRequest to express that a leadership transfer is going
// on.
candidateFromLeadershipTransfer bool
// Stores our local server ID, used to avoid sending RPCs to ourself
localID ServerID
// Stores our local addr
localAddr ServerAddress
// Used for our logging
logger hclog.Logger
// LogStore provides durable storage for logs
logs LogStore
// Used to request the leader to make configuration changes.
configurationChangeCh chan *configurationChangeFuture
// Tracks the latest configuration and latest committed configuration from
// the log/snapshot.
configurations configurations
// Holds a copy of the latest configuration which can be read independently
// of the main loop.
latestConfiguration atomic.Value
// RPC chan comes from the transport layer
rpcCh <-chan RPC
// Shutdown channel to exit, protected to prevent concurrent exits
shutdown bool
shutdownCh chan struct{}
shutdownLock sync.Mutex
// snapshots is used to store and retrieve snapshots
snapshots SnapshotStore
// userSnapshotCh is used for user-triggered snapshots
userSnapshotCh chan *userSnapshotFuture
// userRestoreCh is used for user-triggered restores of external
// snapshots
userRestoreCh chan *userRestoreFuture
// stable is a StableStore implementation for durable state
// It provides stable storage for many fields in raftState
stable StableStore
// The transport layer we use
trans Transport
// verifyCh is used to async send verify futures to the main thread
// to verify we are still the leader
verifyCh chan *verifyFuture
// configurationsCh is used to get the configuration data safely from
// outside of the main thread.
configurationsCh chan *configurationsFuture
// bootstrapCh is used to attempt an initial bootstrap from outside of
// the main thread.
bootstrapCh chan *bootstrapFuture
// List of observers and the mutex that protects them. The observers list
// is indexed by an artificial ID which is used for deregistration.
observersLock sync.RWMutex
observers map[uint64]*Observer
// leadershipTransferCh is used to start a leadership transfer from outside of
// the main thread.
leadershipTransferCh chan *leadershipTransferFuture
}
// BootstrapCluster initializes a server's storage with the given cluster
// configuration. This should only be called at the beginning of time for the
// cluster with an identical configuration listing all Voter servers. There is
// no need to bootstrap Nonvoter and Staging servers.
//
// A cluster can only be bootstrapped once from a single participating Voter
// server. Any further attempts to bootstrap will return an error that can be
// safely ignored.
//
// One approach is to bootstrap a single server with a configuration
// listing just itself as a Voter, then invoke AddVoter() on it to add other
// servers to the cluster.
func BootstrapCluster(conf *Config, logs LogStore, stable StableStore,
snaps SnapshotStore, trans Transport, configuration Configuration) error {
// Validate the Raft server config.
if err := ValidateConfig(conf); err != nil {
return err
}
// Sanity check the Raft peer configuration.
if err := checkConfiguration(configuration); err != nil {
return err
}
// Make sure the cluster is in a clean state.
hasState, err := HasExistingState(logs, stable, snaps)
if err != nil {
return fmt.Errorf("failed to check for existing state: %v", err)
}
if hasState {
return ErrCantBootstrap
}
// Set current term to 1.
if err := stable.SetUint64(keyCurrentTerm, 1); err != nil {
return fmt.Errorf("failed to save current term: %v", err)
}
// Append configuration entry to log.
entry := &Log{
Index: 1,
Term: 1,
}
if conf.ProtocolVersion < 3 {
entry.Type = LogRemovePeerDeprecated
entry.Data = encodePeers(configuration, trans)
} else {
entry.Type = LogConfiguration
entry.Data = EncodeConfiguration(configuration)
}
if err := logs.StoreLog(entry); err != nil {
return fmt.Errorf("failed to append configuration entry to log: %v", err)
}
return nil
}
// RecoverCluster is used to manually force a new configuration in order to
// recover from a loss of quorum where the current configuration cannot be
// restored, such as when several servers die at the same time. This works by
// reading all the current state for this server, creating a snapshot with the
// supplied configuration, and then truncating the Raft log. This is the only
// safe way to force a given configuration without actually altering the log to
// insert any new entries, which could cause conflicts with other servers with
// different state.
//
// WARNING! This operation implicitly commits all entries in the Raft log, so
// in general this is an extremely unsafe operation. If you've lost your other
// servers and are performing a manual recovery, then you've also lost the
// commit information, so this is likely the best you can do, but you should be
// aware that calling this can cause Raft log entries that were in the process
// of being replicated but not yet be committed to be committed.
//
// Note the FSM passed here is used for the snapshot operations and will be
// left in a state that should not be used by the application. Be sure to
// discard this FSM and any associated state and provide a fresh one when
// calling NewRaft later.
//
// A typical way to recover the cluster is to shut down all servers and then
// run RecoverCluster on every server using an identical configuration. When
// the cluster is then restarted, and election should occur and then Raft will
// resume normal operation. If it's desired to make a particular server the
// leader, this can be used to inject a new configuration with that server as
// the sole voter, and then join up other new clean-state peer servers using
// the usual APIs in order to bring the cluster back into a known state.
func RecoverCluster(conf *Config, fsm FSM, logs LogStore, stable StableStore,
snaps SnapshotStore, trans Transport, configuration Configuration) error {
// Validate the Raft server config.
if err := ValidateConfig(conf); err != nil {
return err
}
// Sanity check the Raft peer configuration.
if err := checkConfiguration(configuration); err != nil {
return err
}
// Refuse to recover if there's no existing state. This would be safe to
// do, but it is likely an indication of an operator error where they
// expect data to be there and it's not. By refusing, we force them
// to show intent to start a cluster fresh by explicitly doing a
// bootstrap, rather than quietly fire up a fresh cluster here.
if hasState, err := HasExistingState(logs, stable, snaps); err != nil {
return fmt.Errorf("failed to check for existing state: %v", err)
} else if !hasState {
return fmt.Errorf("refused to recover cluster with no initial state, this is probably an operator error")
}
// Attempt to restore any snapshots we find, newest to oldest.
var (
snapshotIndex uint64
snapshotTerm uint64
snapshots, err = snaps.List()
)
if err != nil {
return fmt.Errorf("failed to list snapshots: %v", err)
}
logger := conf.getOrCreateLogger()
for _, snapshot := range snapshots {
var source io.ReadCloser
_, source, err = snaps.Open(snapshot.ID)
if err != nil {
// Skip this one and try the next. We will detect if we
// couldn't open any snapshots.
continue
}
// Note this is the one place we call fsm.Restore without the
// fsmRestoreAndMeasure wrapper since this function should only be called to
// reset state on disk and the FSM passed will not be used for a running
// server instance. If the same process will eventually become a Raft peer
// then it will call NewRaft and restore again from disk then which will
// report metrics.
snapLogger := logger.With(
"id", snapshot.ID,
"last-index", snapshot.Index,
"last-term", snapshot.Term,
"size-in-bytes", snapshot.Size,
)
crc := newCountingReadCloser(source)
monitor := startSnapshotRestoreMonitor(snapLogger, crc, snapshot.Size, false)
err = fsm.Restore(crc)
// Close the source after the restore has completed
source.Close()
monitor.StopAndWait()
if err != nil {
// Same here, skip and try the next one.
continue
}
snapshotIndex = snapshot.Index
snapshotTerm = snapshot.Term
break
}
if len(snapshots) > 0 && (snapshotIndex == 0 || snapshotTerm == 0) {
return fmt.Errorf("failed to restore any of the available snapshots")
}
// The snapshot information is the best known end point for the data
// until we play back the Raft log entries.
lastIndex := snapshotIndex
lastTerm := snapshotTerm
// Apply any Raft log entries past the snapshot.
lastLogIndex, err := logs.LastIndex()
if err != nil {
return fmt.Errorf("failed to find last log: %v", err)
}
for index := snapshotIndex + 1; index <= lastLogIndex; index++ {
var entry Log
if err = logs.GetLog(index, &entry); err != nil {
return fmt.Errorf("failed to get log at index %d: %v", index, err)
}
if entry.Type == LogCommand {
_ = fsm.Apply(&entry)
}
lastIndex = entry.Index
lastTerm = entry.Term
}
// Create a new snapshot, placing the configuration in as if it was
// committed at index 1.
snapshot, err := fsm.Snapshot()
if err != nil {
return fmt.Errorf("failed to snapshot FSM: %v", err)
}
version := getSnapshotVersion(conf.ProtocolVersion)
sink, err := snaps.Create(version, lastIndex, lastTerm, configuration, 1, trans)
if err != nil {
return fmt.Errorf("failed to create snapshot: %v", err)
}
if err = snapshot.Persist(sink); err != nil {
return fmt.Errorf("failed to persist snapshot: %v", err)
}
if err = sink.Close(); err != nil {
return fmt.Errorf("failed to finalize snapshot: %v", err)
}
// Compact the log so that we don't get bad interference from any
// configuration change log entries that might be there.
firstLogIndex, err := logs.FirstIndex()
if err != nil {
return fmt.Errorf("failed to get first log index: %v", err)
}
if err := logs.DeleteRange(firstLogIndex, lastLogIndex); err != nil {
return fmt.Errorf("log compaction failed: %v", err)
}
return nil
}
// GetConfiguration returns the persisted configuration of the Raft cluster
// without starting a Raft instance or connecting to the cluster. This function
// has identical behavior to Raft.GetConfiguration.
func GetConfiguration(conf *Config, fsm FSM, logs LogStore, stable StableStore,
snaps SnapshotStore, trans Transport) (Configuration, error) {
conf.skipStartup = true
r, err := NewRaft(conf, fsm, logs, stable, snaps, trans)
if err != nil {
return Configuration{}, err
}
future := r.GetConfiguration()
if err = future.Error(); err != nil {
return Configuration{}, err
}
return future.Configuration(), nil
}
// HasExistingState returns true if the server has any existing state (logs,
// knowledge of a current term, or any snapshots).
func HasExistingState(logs LogStore, stable StableStore, snaps SnapshotStore) (bool, error) {
// Make sure we don't have a current term.
currentTerm, err := stable.GetUint64(keyCurrentTerm)
if err == nil {
if currentTerm > 0 {
return true, nil
}
} else {
if err.Error() != "not found" {
return false, fmt.Errorf("failed to read current term: %v", err)
}
}
// Make sure we have an empty log.
lastIndex, err := logs.LastIndex()
if err != nil {
return false, fmt.Errorf("failed to get last log index: %v", err)
}
if lastIndex > 0 {
return true, nil
}
// Make sure we have no snapshots
snapshots, err := snaps.List()
if err != nil {
return false, fmt.Errorf("failed to list snapshots: %v", err)
}
if len(snapshots) > 0 {
return true, nil
}
return false, nil
}
// NewRaft is used to construct a new Raft node. It takes a configuration, as well
// as implementations of various interfaces that are required. If we have any
// old state, such as snapshots, logs, peers, etc, all those will be restored
// when creating the Raft node.
func NewRaft(conf *Config, fsm FSM, logs LogStore, stable StableStore, snaps SnapshotStore, trans Transport) (*Raft, error) {
// Validate the configuration.
if err := ValidateConfig(conf); err != nil {
return nil, err
}
// Ensure we have a LogOutput.
logger := conf.getOrCreateLogger()
// Try to restore the current term.
currentTerm, err := stable.GetUint64(keyCurrentTerm)
if err != nil && err.Error() != "not found" {
return nil, fmt.Errorf("failed to load current term: %v", err)
}
// Read the index of the last log entry.
lastIndex, err := logs.LastIndex()
if err != nil {
return nil, fmt.Errorf("failed to find last log: %v", err)
}
// Get the last log entry.
var lastLog Log
if lastIndex > 0 {
if err = logs.GetLog(lastIndex, &lastLog); err != nil {
return nil, fmt.Errorf("failed to get last log at index %d: %v", lastIndex, err)
}
}
// Make sure we have a valid server address and ID.
protocolVersion := conf.ProtocolVersion
localAddr := trans.LocalAddr()
localID := conf.LocalID
// TODO (slackpad) - When we deprecate protocol version 2, remove this
// along with the AddPeer() and RemovePeer() APIs.
if protocolVersion < 3 && string(localID) != string(localAddr) {
return nil, fmt.Errorf("when running with ProtocolVersion < 3, LocalID must be set to the network address")
}
// Buffer applyCh to MaxAppendEntries if the option is enabled
applyCh := make(chan *logFuture)
if conf.BatchApplyCh {
applyCh = make(chan *logFuture, conf.MaxAppendEntries)
}
// Create Raft struct.
r := &Raft{
protocolVersion: protocolVersion,
applyCh: applyCh,
fsm: fsm,
fsmMutateCh: make(chan interface{}, 128),
fsmSnapshotCh: make(chan *reqSnapshotFuture),
leaderCh: make(chan bool, 1),
localID: localID,
localAddr: localAddr,
logger: logger,
logs: logs,
configurationChangeCh: make(chan *configurationChangeFuture),
configurations: configurations{},
rpcCh: trans.Consumer(),
snapshots: snaps,
userSnapshotCh: make(chan *userSnapshotFuture),
userRestoreCh: make(chan *userRestoreFuture),
shutdownCh: make(chan struct{}),
stable: stable,
trans: trans,
verifyCh: make(chan *verifyFuture, 64),
configurationsCh: make(chan *configurationsFuture, 8),
bootstrapCh: make(chan *bootstrapFuture),
observers: make(map[uint64]*Observer),
leadershipTransferCh: make(chan *leadershipTransferFuture, 1),
}
r.conf.Store(*conf)
// Initialize as a follower.
r.setState(Follower)
// Restore the current term and the last log.
r.setCurrentTerm(currentTerm)
r.setLastLog(lastLog.Index, lastLog.Term)
// Attempt to restore a snapshot if there are any.
if err := r.restoreSnapshot(); err != nil {
return nil, err
}
// Scan through the log for any configuration change entries.
snapshotIndex, _ := r.getLastSnapshot()
for index := snapshotIndex + 1; index <= lastLog.Index; index++ {
var entry Log
if err := r.logs.GetLog(index, &entry); err != nil {
r.logger.Error("failed to get log", "index", index, "error", err)
panic(err)
}
if err := r.processConfigurationLogEntry(&entry); err != nil {
return nil, err
}
}
r.logger.Info("initial configuration",
"index", r.configurations.latestIndex,
"servers", hclog.Fmt("%+v", r.configurations.latest.Servers))
// Setup a heartbeat fast-path to avoid head-of-line
// blocking where possible. It MUST be safe for this
// to be called concurrently with a blocking RPC.
trans.SetHeartbeatHandler(r.processHeartbeat)
if conf.skipStartup {
return r, nil
}
// Start the background work.
r.goFunc(r.run)
r.goFunc(r.runFSM)
r.goFunc(r.runSnapshots)
return r, nil
}
// restoreSnapshot attempts to restore the latest snapshots, and fails if none
// of them can be restored. This is called at initialization time, and is
// completely unsafe to call at any other time.
func (r *Raft) restoreSnapshot() error {
snapshots, err := r.snapshots.List()
if err != nil {
r.logger.Error("failed to list snapshots", "error", err)
return err
}
// Try to load in order of newest to oldest
for _, snapshot := range snapshots {
if success := r.tryRestoreSingleSnapshot(snapshot); !success {
continue
}
// Update the lastApplied so we don't replay old logs
r.setLastApplied(snapshot.Index)
// Update the last stable snapshot info
r.setLastSnapshot(snapshot.Index, snapshot.Term)
// Update the configuration
var conf Configuration
var index uint64
if snapshot.Version > 0 {
conf = snapshot.Configuration
index = snapshot.ConfigurationIndex
} else {
var err error
if conf, err = decodePeers(snapshot.Peers, r.trans); err != nil {
return err
}
index = snapshot.Index
}
r.setCommittedConfiguration(conf, index)
r.setLatestConfiguration(conf, index)
// Success!
return nil
}
// If we had snapshots and failed to load them, its an error
if len(snapshots) > 0 {
return fmt.Errorf("failed to load any existing snapshots")
}
return nil
}
func (r *Raft) tryRestoreSingleSnapshot(snapshot *SnapshotMeta) bool {
if r.config().NoSnapshotRestoreOnStart {
return true
}
snapLogger := r.logger.With(
"id", snapshot.ID,
"last-index", snapshot.Index,
"last-term", snapshot.Term,
"size-in-bytes", snapshot.Size,
)
snapLogger.Info("starting restore from snapshot")
_, source, err := r.snapshots.Open(snapshot.ID)
if err != nil {
snapLogger.Error("failed to open snapshot", "error", err)
return false
}
if err := fsmRestoreAndMeasure(snapLogger, r.fsm, source, snapshot.Size); err != nil {
source.Close()
snapLogger.Error("failed to restore snapshot", "error", err)
return false
}
source.Close()
snapLogger.Info("restored from snapshot")
return true
}
func (r *Raft) config() Config {
return r.conf.Load().(Config)
}
// ReloadConfig updates the configuration of a running raft node. If the new
// configuration is invalid an error is returned and no changes made to the
// instance. All fields will be copied from rc into the new configuration, even
// if they are zero valued.
func (r *Raft) ReloadConfig(rc ReloadableConfig) error {
r.confReloadMu.Lock()
defer r.confReloadMu.Unlock()
// Load the current config (note we are under a lock so it can't be changed
// between this read and a later Store).
oldCfg := r.config()
// Set the reloadable fields
newCfg := rc.apply(oldCfg)
if err := ValidateConfig(&newCfg); err != nil {
return err
}
r.conf.Store(newCfg)
return nil
}
// ReloadableConfig returns the current state of the reloadable fields in Raft's
// configuration. This is useful for programs to discover the current state for
// reporting to users or tests. It is safe to call from any goroutine. It is
// intended for reporting and testing purposes primarily; external
// synchronization would be required to safely use this in a read-modify-write
// pattern for reloadable configuration options.
func (r *Raft) ReloadableConfig() ReloadableConfig {
cfg := r.config()
var rc ReloadableConfig
rc.fromConfig(cfg)
return rc
}
// BootstrapCluster is equivalent to non-member BootstrapCluster but can be
// called on an un-bootstrapped Raft instance after it has been created. This
// should only be called at the beginning of time for the cluster with an
// identical configuration listing all Voter servers. There is no need to
// bootstrap Nonvoter and Staging servers.
//
// A cluster can only be bootstrapped once from a single participating Voter
// server. Any further attempts to bootstrap will return an error that can be
// safely ignored.
//
// One sane approach is to bootstrap a single server with a configuration
// listing just itself as a Voter, then invoke AddVoter() on it to add other
// servers to the cluster.
func (r *Raft) BootstrapCluster(configuration Configuration) Future {
bootstrapReq := &bootstrapFuture{}
bootstrapReq.init()
bootstrapReq.configuration = configuration
select {
case <-r.shutdownCh:
return errorFuture{ErrRaftShutdown}
case r.bootstrapCh <- bootstrapReq:
return bootstrapReq
}
}
// Leader is used to return the current leader of the cluster.
// It may return empty string if there is no current leader
// or the leader is unknown.
func (r *Raft) Leader() ServerAddress {
r.leaderLock.RLock()
leader := r.leader
r.leaderLock.RUnlock()
return leader
}
// Apply is used to apply a command to the FSM in a highly consistent
// manner. This returns a future that can be used to wait on the application.
// An optional timeout can be provided to limit the amount of time we wait
// for the command to be started. This must be run on the leader or it
// will fail.
func (r *Raft) Apply(cmd []byte, timeout time.Duration) ApplyFuture {
return r.ApplyLog(Log{Data: cmd}, timeout)
}
// ApplyLog performs Apply but takes in a Log directly. The only values
// currently taken from the submitted Log are Data and Extensions.
func (r *Raft) ApplyLog(log Log, timeout time.Duration) ApplyFuture {
metrics.IncrCounter([]string{"raft", "apply"}, 1)
var timer <-chan time.Time
if timeout > 0 {
timer = time.After(timeout)
}
// Create a log future, no index or term yet
logFuture := &logFuture{
log: Log{
Type: LogCommand,
Data: log.Data,
Extensions: log.Extensions,
},
}
logFuture.init()
select {
case <-timer:
return errorFuture{ErrEnqueueTimeout}
case <-r.shutdownCh:
return errorFuture{ErrRaftShutdown}
case r.applyCh <- logFuture:
return logFuture
}
}
// Barrier is used to issue a command that blocks until all preceding
// operations have been applied to the FSM. It can be used to ensure the
// FSM reflects all queued writes. An optional timeout can be provided to
// limit the amount of time we wait for the command to be started. This
// must be run on the leader, or it will fail.
func (r *Raft) Barrier(timeout time.Duration) Future {
metrics.IncrCounter([]string{"raft", "barrier"}, 1)
var timer <-chan time.Time
if timeout > 0 {
timer = time.After(timeout)
}
// Create a log future, no index or term yet
logFuture := &logFuture{log: Log{Type: LogBarrier}}
logFuture.init()
select {
case <-timer:
return errorFuture{ErrEnqueueTimeout}
case <-r.shutdownCh:
return errorFuture{ErrRaftShutdown}
case r.applyCh <- logFuture:
return logFuture
}
}
// VerifyLeader is used to ensure this peer is still the leader. It may be used
// to prevent returning stale data from the FSM after the peer has lost
// leadership.
func (r *Raft) VerifyLeader() Future {
metrics.IncrCounter([]string{"raft", "verify_leader"}, 1)
verifyFuture := &verifyFuture{}
verifyFuture.init()
select {
case <-r.shutdownCh:
return errorFuture{ErrRaftShutdown}
case r.verifyCh <- verifyFuture:
return verifyFuture
}
}
// GetConfiguration returns the latest configuration. This may not yet be
// committed. The main loop can access this directly.
func (r *Raft) GetConfiguration() ConfigurationFuture {
configReq := &configurationsFuture{}
configReq.init()
configReq.configurations = configurations{latest: r.getLatestConfiguration()}
configReq.respond(nil)
return configReq
}
// AddPeer to the cluster configuration. Must be run on the leader, or it will fail.
//
// Deprecated: Use AddVoter/AddNonvoter instead.
func (r *Raft) AddPeer(peer ServerAddress) Future {
if r.protocolVersion > 2 {
return errorFuture{ErrUnsupportedProtocol}
}
return r.requestConfigChange(configurationChangeRequest{
command: AddVoter,
serverID: ServerID(peer),
serverAddress: peer,
prevIndex: 0,
}, 0)
}
// RemovePeer from the cluster configuration. If the current leader is being
// removed, it will cause a new election to occur. Must be run on the leader,
// or it will fail.
// Deprecated: Use RemoveServer instead.
func (r *Raft) RemovePeer(peer ServerAddress) Future {
if r.protocolVersion > 2 {
return errorFuture{ErrUnsupportedProtocol}
}
return r.requestConfigChange(configurationChangeRequest{
command: RemoveServer,
serverID: ServerID(peer),
prevIndex: 0,
}, 0)
}
// AddVoter will add the given server to the cluster as a staging server. If the
// server is already in the cluster as a voter, this updates the server's address.
// This must be run on the leader or it will fail. The leader will promote the
// staging server to a voter once that server is ready. If nonzero, prevIndex is
// the index of the only configuration upon which this change may be applied; if
// another configuration entry has been added in the meantime, this request will
// fail. If nonzero, timeout is how long this server should wait before the
// configuration change log entry is appended.
func (r *Raft) AddVoter(id ServerID, address ServerAddress, prevIndex uint64, timeout time.Duration) IndexFuture {
if r.protocolVersion < 2 {
return errorFuture{ErrUnsupportedProtocol}
}
return r.requestConfigChange(configurationChangeRequest{
command: AddVoter,
serverID: id,
serverAddress: address,
prevIndex: prevIndex,
}, timeout)
}
// AddNonvoter will add the given server to the cluster but won't assign it a
// vote. The server will receive log entries, but it won't participate in
// elections or log entry commitment. If the server is already in the cluster,
// this updates the server's address. This must be run on the leader or it will
// fail. For prevIndex and timeout, see AddVoter.
func (r *Raft) AddNonvoter(id ServerID, address ServerAddress, prevIndex uint64, timeout time.Duration) IndexFuture {
if r.protocolVersion < 3 {
return errorFuture{ErrUnsupportedProtocol}
}
return r.requestConfigChange(configurationChangeRequest{
command: AddNonvoter,
serverID: id,
serverAddress: address,
prevIndex: prevIndex,
}, timeout)
}
// RemoveServer will remove the given server from the cluster. If the current
// leader is being removed, it will cause a new election to occur. This must be
// run on the leader or it will fail. For prevIndex and timeout, see AddVoter.
func (r *Raft) RemoveServer(id ServerID, prevIndex uint64, timeout time.Duration) IndexFuture {
if r.protocolVersion < 2 {
return errorFuture{ErrUnsupportedProtocol}
}
return r.requestConfigChange(configurationChangeRequest{
command: RemoveServer,
serverID: id,
prevIndex: prevIndex,
}, timeout)
}
// DemoteVoter will take away a server's vote, if it has one. If present, the
// server will continue to receive log entries, but it won't participate in
// elections or log entry commitment. If the server is not in the cluster, this
// does nothing. This must be run on the leader or it will fail. For prevIndex
// and timeout, see AddVoter.
func (r *Raft) DemoteVoter(id ServerID, prevIndex uint64, timeout time.Duration) IndexFuture {
if r.protocolVersion < 3 {
return errorFuture{ErrUnsupportedProtocol}
}
return r.requestConfigChange(configurationChangeRequest{
command: DemoteVoter,
serverID: id,
prevIndex: prevIndex,
}, timeout)
}
// Shutdown is used to stop the Raft background routines.
// This is not a graceful operation. Provides a future that
// can be used to block until all background routines have exited.
func (r *Raft) Shutdown() Future {
r.shutdownLock.Lock()
defer r.shutdownLock.Unlock()
if !r.shutdown {
close(r.shutdownCh)
r.shutdown = true
r.setState(Shutdown)
return &shutdownFuture{r}
}
// avoid closing transport twice
return &shutdownFuture{nil}
}
// Snapshot is used to manually force Raft to take a snapshot. Returns a future
// that can be used to block until complete, and that contains a function that
// can be used to open the snapshot.
func (r *Raft) Snapshot() SnapshotFuture {
future := &userSnapshotFuture{}
future.init()
select {
case r.userSnapshotCh <- future:
return future
case <-r.shutdownCh:
future.respond(ErrRaftShutdown)
return future
}
}
// Restore is used to manually force Raft to consume an external snapshot, such
// as if restoring from a backup. We will use the current Raft configuration,
// not the one from the snapshot, so that we can restore into a new cluster. We
// will also use the max of the index of the snapshot, or the current index,
// and then add 1 to that, so we force a new state with a hole in the Raft log,
// so that the snapshot will be sent to followers and used for any new joiners.
// This can only be run on the leader, and blocks until the restore is complete
// or an error occurs.
//
// WARNING! This operation has the leader take on the state of the snapshot and
// then sets itself up so that it replicates that to its followers though the
// install snapshot process. This involves a potentially dangerous period where
// the leader commits ahead of its followers, so should only be used for disaster
// recovery into a fresh cluster, and should not be used in normal operations.
func (r *Raft) Restore(meta *SnapshotMeta, reader io.Reader, timeout time.Duration) error {
metrics.IncrCounter([]string{"raft", "restore"}, 1)
var timer <-chan time.Time
if timeout > 0 {
timer = time.After(timeout)
}
// Perform the restore.
restore := &userRestoreFuture{
meta: meta,
reader: reader,
}