-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
77 lines (61 loc) · 2.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import re
import string
import os
import pandas as pd
from nltk.corpus import stopwords
import numpy as np
import matplotlib.pyplot as plt
dataset = pd.read_csv('SosyalMedyaReklamKampanyasi.csv')
nok_isaretleri_kümesi = string.punctuation
# etkisiz kelimeler
etkisiz_kelimeler_kümesi = stopwords
def clean_data(data):
data = data.lower()
data = data.replace("\\n", " ")
data = re.sub("[0-9]+", " ", data)
data = re.sub(r'[^\w\s]', '', data)
data = re.sub("'(\w+)", "", data)
data = " ".join(list(map(lambda x: x if x not in nok_isaretleri_kümesi else " ", data)))
data = " ".join([i for i in data.split() if i not in etkisiz_kelimeler_kümesi])
data = " ".join([i for i in data.split() if len(i) > 1])
return data
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
print(dataset)
#veriyi egitim ve test olarak ayırdık
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
#bagımsız degiskenlerden yas ile tahmini gelir aynı birimde olmadıgı için
#feature scaling uygulayacağız
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
#svm modeli olusturmak ve egitmek
from sklearn.svm import SVC
classifier=SVC(kernel='linear', random_state=0)
classifier.fit(X_train, y_train)
#test seti ile tahmin yapmak
y_pred = classifier.predict(X_test)
#hata matrisini oluşturma
from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test, y_pred)
print(cm)
#grafik
from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('blue', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('yellow', 'green'))(i), label = j)
plt.title('SVM (Eğitim Seti)')
plt.xlabel('Yaş')
plt.ylabel('Maaş')
plt.legend()
plt.show()