forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 1
/
_323.java
80 lines (64 loc) · 2.19 KB
/
_323.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
package com.fishercoder.solutions;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
/**
* 323. Number of Connected Components in an Undirected Graph
*
* Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.
Example 1:
0 3
| |
1 --- 2 4
Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], return 2.
Example 2:
0 4
| |
1 --- 2 --- 3
Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]], return 1.
Note:
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
*/
public class _323 {
public static class Solution1 {
public int countComponents(int n, int[][] edges) {
if (n <= 1) {
return n;
}
List<List<Integer>> adList = new ArrayList<>();
for (int i = 0; i < n; i++) {
adList.add(new ArrayList<>());
}
for (int[] edge : edges) {
adList.get(edge[0]).add(edge[1]);
adList.get(edge[1]).add(edge[0]);
}
for (List<Integer> list : adList) {
for (int i : list) {
System.out.print(i + ", ");
}
System.out.println();
}
boolean[] visited = new boolean[n];
int count = 0;
for (int i = 0; i < n; i++) {
if (!visited[i]) {
count++;
Queue<Integer> q = new LinkedList<>();
q.offer(i);
while (!q.isEmpty()) {
int index = q.poll();
visited[index] = true;
for (int j : adList.get(index)) {
if (!visited[j]) {
q.offer(j);
}
}
}
}
}
return count;
}
}
}