-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
485 lines (290 loc) · 12 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
<!DOCTYPE html>
<html>
<head>
<title> Change Detection in Social Networks</title>
<meta charset="utf-8">
<meta name="author" content=" Ian McCulloh, Matthew Webb, John Graham U.S. Military Academy Kathleen Carley Carnegie Mellon University Daniel B. Horn U.S. Army Research Institute" />
<link href="libs/remark-css/default.css" rel="stylesheet" />
<link href="libs/remark-css/default-fonts.css" rel="stylesheet" />
</head>
<body>
<textarea id="source">
class: center, middle, inverse, title-slide
# <strong> Change Detection in Social Networks</strong>
## <strong> Social Networks Analysis and Statistical Process Control </strong>
### <strong> Ian McCulloh, Matthew Webb, John Graham </strong> </br> U.S. Military Academy </br> <strong> Kathleen Carley </strong> </br> Carnegie Mellon University </br> <strong> Daniel B. Horn </strong> </br> U.S. Army Research Institute
### 05 / 17 / 2018
---
class: center, middle
![](http://www.bienestar.unal.edu.co/wp-content/uploads/2017/04/unal-700x300.png)
## **Submitted by:**
### Hernán David Torres Cardona
## **Professor:**
### Rubén Darío Guevara
---
class: inverse, center, middle
# Introduction
---
# Social Networks Analysis
## Research Requirement
### **Social networks analysis** may signal **change** within an organization and **predict** significant events or behaviors.
.footnote[
[1] McCulloh, I., Webb, M., Graham, J., Carley, K., & Horn, D. B. (2008). Change detection in social networks. Military Academy Dept Mathematical sciences. [PDF](http://www.dtic.mil/get-tr-doc/pdf?AD=ADA484611)
]
--
### Detect these changes enables
--
- ### the **anticipation** and early **warning** of change and
--
- ### **faster response** to change
---
background-image: url(http://www.casos.cs.cmu.edu/projects/nukes/nukes.png)
background-size: 650px 590px
class: center, bottom, inverse
# A Twitter retweet!
---
# Organizations are not static
## The challenge
- ### Their structure, composition, and patterns of communication may change **over time**.
--
- ### A certain degree of change is expected in the **normal course** of an unchanging organization.
--
- ### Develope metrics to detect **signals of meaningful change** in a background of normal variability.
---
# Social Network Change Detection
## Overview
### Previous methods may be effective at quantifying a difference in static networks, **but** they lack an underlying **statistical distribution**.
### **Examples**
- ### Hamming distance: Error detector and corrector codes
- ### Euclidean distance: Weighted networks
- ### Exponential Random Graph Models: Metrics and statistical models describe structural changes
---
# Social Network Change Detection
## Now and in what way?
--
### Improving significantly on previous attempts to detect organizational change **over time**.
--
### Introducing a statistically sound **probability space** and uniformly more powerful **detection methods¨**
--
### Techniques from _*SNA*_, combined with those from _*SPC*_.
.footnote[
SNA: Social Networks Analysis
SPC: Statistical Process Control
]
---
class: inverse, middle, center
# Social Network Analysis
---
# Graphs
--
### SNA provides the basis for how social networks are modeled, measured, compared and visualized.
<center><iframe src="https://giphy.com/embed/b8032T9vBcIak" width="330" height="230" frameBorder="0" class="giphy-embed" allowFullScreen></iframe></center>
--
+ ### An **observed social network** can be modeled on a graph with **nodes** and links between them as **edges**. [1]
.footnote[[1] (Scott, 2002; Wasserman & Faust, 1994) ]
--
---
# Network Measures
--
### Network measures can be calculated
--
- ### **from the entire graph (_extrinsic attributes_) or **
--
- ### for each individual node (_intrinsic attributes_).
---
# Network Measures
## Extrinsic Attributes
### **Density**
### How many links exist in the graph divided by the total number of possible links.
$$ d = \frac{\text{# edges}}{n(n-1)}$$
---
background-image: url(https://community.toadworld.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-00-70/Comunidades.JPG)
background-size: 650px 600px
class: center, bottom, inverse
# Density
---
# Centrality Network Measures
## Extrinsic Attributes
###**Closeness centrality**
### How a node is connected beyond its immediate neighbors.
`$$c_k = \frac{\min_k\{\sum_{i=1}^n g_{ki}\}}{\sum_{i=1}^n g_{ki}}$$`
+ `\(g_{ik}\)`: the number of geodesic paths between nodes i and j.
---
background-image: url(untitled.png)
background-size: 650px 600px
class: center, bottom, inverse
# Closeness centrality
---
# Centrality Network Measures
## Extrinsic Attributes
### **Betweenness centrality**
### How often a node lies along the shortest path, or geodesic, between two other nodes for all nodes in a graph.
`$$b_k = \sum _{i,j} \frac{g_{ikj}}{g_{ij}}$$`
+ `\(g_{ikj}\)`: the number of geodesic paths between nodes i and j crossing node k.
+ `\(g_{ij}\)`: total number of geodesic paths between nodes i and j.
---
background-image: url(untitled2.png)
background-size: 650px 600px
class: center, bottom, inverse
# Betweenness centrality
---
# What is a Meta-Network?
+ ### **Meta-Network** – A representation of a Group of Networks.
--
+ ### **Node** – A representation of a real-world item (a who, what, where, how, why item).
--
+ ### **Node Class** – A set of nodes of one type.
--
+ ### **Link** – A representation of a tie, edge, connection, or relation link between any two nodes.
--
+ ### **Network** – A representation of a set of nodes of one type and the links of one type between them.
--
+ ### **Attribute** – Additional information about a node.
---
class: inverse, middle, center
# Statistical Process Control
---
# Control charts
### SPC is a technique used mostly to monitor industrial processes.
--
### These detect changes in the **mean** of the process by taking periodic samples of the product and tracking the results against a **control limit**.
--
### Control charts are usually optimized for their processes to increase their sensitivity for detecting changes, while minimizing the number of **false alarms**.
---
# CUSUM* Control Chart
### The **decision rule** runs off the cumulative statistic
`$$C_t = \sum_{j=1}^t (Z_i - k)$$`
.footnote[[*] Cumulative Sum]
--
#### where `\(Z_i\)` is the standardized normal of each observation and the common choice for `\(k\)` is 0.5
--
### This chart is well suited:
--
+ ### To detect small changes in the mean of a process over time.
--
+ ### To found its built-in change point detection
---
class: inverse, middle, center
# Methods and Result
---
# Graph mesures
### The average graph measures for **density**, **closeness**, and **betweenness centrality** are calculated for several consecutive time periods of the social network.
--
+ ### The **“in-control” mean and variance** for the measures of the network are calculated by taking a sample average and sample variance of the **stabilized measures**.
--
+ ### The subsequent, successive social network measures are then used to calculate the CUSUM’s statistics.
--
+ ### Upon receiving a signal, the **change point** is calculated by tracing the signaling statistic back to the last time period it was zero.
---
# Network mesures
+ ### Network measures of interest should follow or approximate a **normal distribution** due to the central limit theorem.
--
+ ### Each of the network measures was fit with five **continuous distributions**: normal, uniform, gamma, exponential, and chi-squared.
--
+ ### **Gamma Distribution** is the best fit for betweenness and density. This invalidated further usage of the **CUSUM Control Chart**.
---
# Tactical Officer Eduaction Program
#### The TOEP officers allow data about their personal and professional e-mail communication to be tracked over a 24-week period.
--
#### Subjects with incomplete communication and not identically distributed data collected were eliminated from further examination.
<p align="center">
<img width="400" height="400" src="NetworkToep.png">
</p>
Graph made with the software ORA
---
# Normally distributed but too much variance
### The planning calendar and participant interviews allowed investigators significant events that occurred each week:
+ #### Academic Requirements
+ #### The Next Week’s Academic Requirements
+ #### Administrative Events
+ #### Group Projects + Social Gatherings
+ #### Days Off.
---
# Normally distributed but too much variance
### **Analysis of variance (ANOVA)**
`$$\text{Closeness} = 0.18 − 0.11(\text{Group Projects} ) + 0.11(\text{Social Gatherings}) + 0.0074(\text{Number of Emails})$$`
<p align="center">
<img width="470" height="200" src="Captura2.PNG">
</p>
---
## Closeness CUSUM
#### When is the model no longer providing a good prediction?
--
#### The `\(C_+\)` and `\(C_-\)` statistics were calculated for each week using a `\(k\)` value of 0.5 and a control limit of 3.
<p align="center">
<img width="600" height="300" src="Captura3.PNG">
</p>
---
## Summary
<p align="center">
<img width="560" height="300" src="Captura4.PNG">
</p>
--
#### **Notices:**
+ #### An increase in group project work was **correlated** with a decrease in communication.
+ #### The **residuals** were verified as normally distributed to meet the prerequisites of the CUSUM Control Chart.
---
# Al-Qaeda Communications Network
#### The data are limited in that we do not know the type, frequency, or substance of the communication and all links are non-directional.
<p align="center">
<img width="500" height="450" src="Captura5.PNG">
</p>
---
## Averages for mesures
<p align="center">
<img width="550" height="300" src="Captura6.PNG">
</p>
--
#### **Notices**
+ #### There might be a significant change in the al-Qaeda network between the years 2000 and 2001.
+ #### We would be alerted to a critical change in the network prior to the September 11 terrorist attacks.
---
class: inverse, middle, center
# Conclusions
---
# Discussion and further work
+ ### Social network monitoring can to detect important changes in the monitored communication of both command and control networks as well as **terrorist networks**.
+ ### Several difficulties were encountered when working with the datasets, for example, the **completeness** of the dataset.
+ ### **Future research** should focus on near-complete datasets with high resolution.
+ ### Networks with a set of good predictors to explain varying behavior may be useful in producing models that can be **control charted**.
---
class: center, middle, inverse
# Thanks!
Slides created via the R package **xaringan**.
</textarea>
<script src="https://remarkjs.com/downloads/remark-latest.min.js"></script>
<script>var slideshow = remark.create({
"highlightStyle": "github",
"highlightLines": true,
"countIncrementalSlides": false,
"css": ["hygge", "metropolis", "metropolis-fonts"]
});
if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
window.dispatchEvent(new Event('resize'));
});
(function() {
var d = document, s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
if (!r) return;
s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
d.head.appendChild(s);
})();</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'https://cdn.bootcss.com/mathjax/2.7.1/MathJax.js?config=TeX-MML-AM_CHTML';
if (location.protocol !== 'file:' && /^https?:/.test(script.src))
script.src = script.src.replace(/^https?:/, '');
document.getElementsByTagName('head')[0].appendChild(script);
})();
</script>
</body>
</html>