-
Notifications
You must be signed in to change notification settings - Fork 0
/
process.log
982 lines (957 loc) · 137 KB
/
process.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/root/miniconda3/envs/data-juicer/lib/python3.8/site-packages/lazy_loader/__init__.py:202: RuntimeWarning: subpackages can technically be lazily loaded, but it causes the package to be eagerly loaded even if it is already lazily loaded.So, you probably shouldn't use subpackages with this lazy feature.
warnings.warn(msg, RuntimeWarning)
2024-11-25 15:27:22.655859: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2024-11-25 15:27:22.703534: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-11-25 15:27:23.448555: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
/root/miniconda3/envs/data-juicer/lib/python3.8/site-packages/lazy_loader/__init__.py:202: RuntimeWarning: subpackages can technically be lazily loaded, but it causes the package to be eagerly loaded even if it is already lazily loaded.So, you probably shouldn't use subpackages with this lazy feature.
warnings.warn(msg, RuntimeWarning)
/root/miniconda3/envs/data-juicer/lib/python3.8/site-packages/lazy_loader/__init__.py:202: RuntimeWarning: subpackages can technically be lazily loaded, but it causes the package to be eagerly loaded even if it is already lazily loaded.So, you probably shouldn't use subpackages with this lazy feature.
warnings.warn(msg, RuntimeWarning)
2024-11-25 15:27:28 | WARNING | data_juicer.config.config:443 - Set dataset cache directory to /mnt/tmp/apps/cmss-yangjiandong/data/the-stack-v2-full-Python/ruff/cache using the ds_cache_dir argument, which is /root/.cache/huggingface/datasets before based on the env variable HF_DATASETS_CACHE.
2024-11-25 15:27:30 | INFO | data_juicer.config.config:635 - Back up the input config file [/mnt/tmp/apps/cmss-yangjiandong/data-juicer/configs/ruff_check/python-ruff-filter-refine.yaml] into the work_dir [/mnt/tmp/apps/cmss-yangjiandong/data/the-stack-v2-full-Python/ruff]
2024-11-25 15:27:30 | INFO | data_juicer.config.config:657 - Configuration table:
╒══════════════════════════╤═══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╕
│ key │ values │
╞══════════════════════════╪═══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╡
│ config │ [Path_fr(configs/ruff_check/python-ruff-filter-refine.yaml, cwd=/mnt/tmp/apps/cmss-yangjiandong/data-juicer)] │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ hpo_config │ None │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ data_probe_algo │ 'uniform' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ data_probe_ratio │ 1.0 │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ project_name │ 'ruff_check_test' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ executor_type │ 'default' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ dataset_path │ '/mnt/tmp/apps/cmss-yangjiandong/staging_stack_v1/scoreresult/the-stack-v2-full-Python-filterscoreTmpSplit_1.parquet' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ generated_dataset_config │ None │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ export_path │ '/mnt/tmp/apps/cmss-yangjiandong/data/the-stack-v2-full-Python/ruff/the-stack-v2-full-Python-ruffFilter.parquet' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ export_shard_size │ 0 │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ export_in_parallel │ False │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ keep_stats_in_res_ds │ False │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ keep_hashes_in_res_ds │ False │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ np │ 50 │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ text_keys │ 'text' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ image_key │ 'images' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ image_special_token │ '<__dj__image>' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ audio_key │ 'audios' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ audio_special_token │ '<__dj__audio>' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ video_key │ 'videos' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ video_special_token │ '<__dj__video>' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ eoc_special_token │ '<|__dj__eoc|>' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ suffixes │ [] │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ turbo │ False │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ use_cache │ True │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ ds_cache_dir │ '/mnt/tmp/apps/cmss-yangjiandong/data/the-stack-v2-full-Python/ruff/cache' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ cache_compress │ None │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ use_checkpoint │ False │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ temp_dir │ None │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ open_tracer │ False │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ op_list_to_trace │ [] │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ trace_num │ 50 │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ op_fusion │ False │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ process │ [{'python_code_ruff_check_filter': {'accelerator': None, │
│ │ 'audio_key': 'audios', │
│ │ 'batch_size': 1000, │
│ │ 'cpu_required': 1, │
│ │ 'image_key': 'images', │
│ │ 'mem_required': 0, │
│ │ 'num_proc': 50, │
│ │ 'ruff_config_path': '/mnt/tmp/apps/cmss-yangjiandong/ruff/pyproject.toml', │
│ │ 'ruff_rato': 0.2, │
│ │ 'stats_export_path': None, │
│ │ 'text_key': 'text', │
│ │ 'tmp_dir': '/mnt/tmp/apps/cmss-yangjiandong/data/tmp', │
│ │ 'turbo': False, │
│ │ 'video_key': 'videos'}}] │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ percentiles │ [] │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ export_original_dataset │ False │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ save_stats_in_one_file │ False │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ ray_address │ 'auto' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ debug │ False │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ work_dir │ '/mnt/tmp/apps/cmss-yangjiandong/data/the-stack-v2-full-Python/ruff' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ timestamp │ '20241125152728' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ dataset_dir │ '/mnt/tmp/apps/cmss-yangjiandong/staging_stack_v1/scoreresult' │
├──────────────────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ add_suffix │ False │
╘══════════════════════════╧═══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╛
2024-11-25 15:27:30 | INFO | data_juicer.core.executor:45 - Using cache compression method: [None]
2024-11-25 15:27:30 | INFO | data_juicer.core.executor:50 - Setting up data formatter...
2024-11-25 15:27:30 | INFO | data_juicer.core.executor:73 - Preparing exporter...
2024-11-25 15:27:30 | INFO | data_juicer.core.executor:150 - Loading dataset from data formatter...
Setting num_proc from 50 back to 1 for the parquet split to disable multiprocessing as it only contains one shard.
Generating parquet split: 0 examples [00:00, ? examples/s]Generating parquet split: 790906 examples [01:13, 10784.94 examples/s]Generating parquet split: 1594537 examples [01:14, 25760.05 examples/s]Generating parquet split: 2370243 examples [01:16, 44827.33 examples/s]Generating parquet split: 3153049 examples [01:17, 69653.84 examples/s]Generating parquet split: 3948536 examples [01:19, 101354.39 examples/s]Generating parquet split: 4738027 examples [01:21, 138878.82 examples/s]Generating parquet split: 5521862 examples [01:22, 181242.83 examples/s]Generating parquet split: 6296425 examples [01:24, 232246.68 examples/s]Generating parquet split: 7081925 examples [01:25, 287822.95 examples/s]Generating parquet split: 7862283 examples [01:26, 342744.63 examples/s]Generating parquet split: 8643763 examples [01:27, 394496.83 examples/s]Generating parquet split: 9000000 examples [01:28, 407969.33 examples/s]Generating parquet split: 9000000 examples [01:30, 99916.48 examples/s]
2024-11-25 15:29:01 | INFO | data_juicer.format.formatter:185 - Unifying the input dataset formats...
2024-11-25 15:29:01 | INFO | data_juicer.format.formatter:200 - There are 9000000 sample(s) in the original dataset.
Filter (num_proc=50): 0%| | 0/9000000 [00:00<?, ? examples/s]Filter (num_proc=50): 0%| | 4000/9000000 [00:00<05:48, 25794.08 examples/s]Filter (num_proc=50): 3%|2 | 226000/9000000 [00:00<00:08, 1075659.73 examples/s]Filter (num_proc=50): 6%|6 | 566000/9000000 [00:00<00:04, 2007347.82 examples/s]Filter (num_proc=50): 10%|# | 923000/9000000 [00:00<00:03, 2571026.71 examples/s]Filter (num_proc=50): 14%|#4 | 1272000/9000000 [00:00<00:02, 2883061.94 examples/s]Filter (num_proc=50): 18%|#8 | 1628000/9000000 [00:00<00:02, 3088708.80 examples/s]Filter (num_proc=50): 22%|##1 | 1949000/9000000 [00:00<00:02, 3117983.79 examples/s]Filter (num_proc=50): 26%|##5 | 2332000/9000000 [00:00<00:02, 3313820.57 examples/s]Filter (num_proc=50): 30%|### | 2713000/9000000 [00:00<00:01, 3459657.40 examples/s]Filter (num_proc=50): 34%|###4 | 3079000/9000000 [00:01<00:01, 3508853.05 examples/s]Filter (num_proc=50): 38%|###8 | 3435000/9000000 [00:01<00:01, 3481882.84 examples/s]Filter (num_proc=50): 42%|####2 | 3785000/9000000 [00:01<00:01, 3472224.82 examples/s]Filter (num_proc=50): 46%|####6 | 4143000/9000000 [00:01<00:01, 3485925.96 examples/s]Filter (num_proc=50): 50%|####9 | 4493000/9000000 [00:01<00:01, 3475963.39 examples/s]Filter (num_proc=50): 54%|#####3 | 4859000/9000000 [00:01<00:01, 3487608.29 examples/s]Filter (num_proc=50): 58%|#####7 | 5216000/9000000 [00:01<00:01, 3507617.53 examples/s]Filter (num_proc=50): 62%|######1 | 5573000/9000000 [00:01<00:00, 3484509.28 examples/s]Filter (num_proc=50): 66%|######5 | 5926000/9000000 [00:01<00:00, 3443152.40 examples/s]Filter (num_proc=50): 70%|######9 | 6275000/9000000 [00:01<00:00, 3429539.10 examples/s]Filter (num_proc=50): 74%|#######3 | 6623000/9000000 [00:02<00:00, 3367599.92 examples/s]Filter (num_proc=50): 77%|#######7 | 6962000/9000000 [00:02<00:00, 3337502.68 examples/s]Filter (num_proc=50): 81%|########1 | 7300000/9000000 [00:02<00:00, 3221766.90 examples/s]Filter (num_proc=50): 85%|########4 | 7625000/9000000 [00:02<00:00, 3068920.00 examples/s]Filter (num_proc=50): 88%|########8 | 7938000/9000000 [00:02<00:00, 2989016.63 examples/s]Filter (num_proc=50): 92%|#########1| 8243000/9000000 [00:02<00:00, 2849263.11 examples/s]Filter (num_proc=50): 95%|#########4| 8534000/9000000 [00:02<00:00, 2567337.52 examples/s]Filter (num_proc=50): 98%|#########7| 8796000/9000000 [00:02<00:00, 2130712.99 examples/s]Simbert不能正常使用,除非你安装:bert4keras、tensorflow ,为了安装快捷,没有默认安装.... module 'keras' has no attribute 'engine'
Filter (num_proc=50): 100%|##########| 9000000/9000000 [00:03<00:00, 2441669.69 examples/s]
2024-11-25 15:29:08 | INFO | data_juicer.format.formatter:214 - 9000000 samples left after filtering empty text.
2024-11-25 15:29:08 | INFO | data_juicer.format.mixture_formatter:137 - sampled 9000000 from 9000000
2024-11-25 15:29:08 | INFO | data_juicer.format.mixture_formatter:143 - There are 9000000 in final dataset
2024-11-25 15:29:08 | INFO | data_juicer.core.executor:156 - Preparing process operators...
2024-11-25 15:29:08 | INFO | data_juicer.core.executor:162 - Processing data...
Adding new column for stats (num_proc=50): 0%| | 0/9000000 [00:00<?, ? examples/s]Adding new column for stats (num_proc=50): 0%| | 936/9000000 [00:00<46:58, 3192.81 examples/s]Adding new column for stats (num_proc=50): 0%| | 13950/9000000 [00:00<03:35, 41730.85 examples/s]Adding new column for stats (num_proc=50): 1%| | 54560/9000000 [00:00<00:59, 150434.39 examples/s]Adding new column for stats (num_proc=50): 1%|1 | 114339/9000000 [00:00<00:31, 284430.32 examples/s]Adding new column for stats (num_proc=50): 2%|1 | 177156/9000000 [00:00<00:22, 387060.18 examples/s]Adding new column for stats (num_proc=50): 3%|2 | 243061/9000000 [00:00<00:18, 468020.43 examples/s]Adding new column for stats (num_proc=50): 3%|3 | 306252/9000000 [00:00<00:16, 516693.92 examples/s]Adding new column for stats (num_proc=50): 4%|4 | 369593/9000000 [00:01<00:15, 551448.03 examples/s]Adding new column for stats (num_proc=50): 5%|4 | 430435/9000000 [00:01<00:15, 568217.71 examples/s]Adding new column for stats (num_proc=50): 5%|5 | 489871/9000000 [00:01<00:15, 562631.35 examples/s]Adding new column for stats (num_proc=50): 6%|6 | 547966/9000000 [00:01<00:18, 457327.29 examples/s]Adding new column for stats (num_proc=50): 7%|6 | 597864/9000000 [00:01<00:23, 353402.40 examples/s]Adding new column for stats (num_proc=50): 7%|7 | 639334/9000000 [00:01<00:28, 291053.26 examples/s]Adding new column for stats (num_proc=50): 8%|7 | 675071/9000000 [00:01<00:27, 303964.86 examples/s]Adding new column for stats (num_proc=50): 8%|7 | 710629/9000000 [00:02<00:26, 315062.20 examples/s]Adding new column for stats (num_proc=50): 8%|8 | 750794/9000000 [00:02<00:24, 335577.94 examples/s]Adding new column for stats (num_proc=50): 9%|8 | 796442/9000000 [00:02<00:22, 365195.71 examples/s]Adding new column for stats (num_proc=50): 9%|9 | 843544/9000000 [00:02<00:20, 392967.25 examples/s]Adding new column for stats (num_proc=50): 10%|9 | 891781/9000000 [00:02<00:19, 417520.11 examples/s]Adding new column for stats (num_proc=50): 10%|# | 942471/9000000 [00:02<00:18, 442565.47 examples/s]Adding new column for stats (num_proc=50): 11%|#1 | 1000767/9000000 [00:02<00:16, 482223.84 examples/s]Adding new column for stats (num_proc=50): 12%|#1 | 1061148/9000000 [00:02<00:15, 517419.69 examples/s]Adding new column for stats (num_proc=50): 12%|#2 | 1122114/9000000 [00:02<00:14, 540539.38 examples/s]Adding new column for stats (num_proc=50): 13%|#3 | 1184394/9000000 [00:02<00:13, 564466.42 examples/s]Adding new column for stats (num_proc=50): 14%|#3 | 1246893/9000000 [00:03<00:13, 581850.41 examples/s]Adding new column for stats (num_proc=50): 15%|#4 | 1311252/9000000 [00:03<00:12, 600134.34 examples/s]Adding new column for stats (num_proc=50): 15%|#5 | 1375185/9000000 [00:03<00:12, 610756.97 examples/s]Adding new column for stats (num_proc=50): 16%|#5 | 1437068/9000000 [00:03<00:12, 612484.84 examples/s]Adding new column for stats (num_proc=50): 17%|#6 | 1500872/9000000 [00:03<00:12, 620107.33 examples/s]Adding new column for stats (num_proc=50): 17%|#7 | 1563453/9000000 [00:03<00:11, 620564.85 examples/s]Adding new column for stats (num_proc=50): 18%|#8 | 1626740/9000000 [00:03<00:11, 620399.34 examples/s]Adding new column for stats (num_proc=50): 19%|#8 | 1689763/9000000 [00:03<00:11, 622454.11 examples/s]Adding new column for stats (num_proc=50): 19%|#9 | 1754027/9000000 [00:03<00:11, 627614.24 examples/s]Adding new column for stats (num_proc=50): 20%|## | 1817249/9000000 [00:03<00:11, 624705.67 examples/s]Adding new column for stats (num_proc=50): 21%|## | 1879926/9000000 [00:04<00:11, 620442.00 examples/s]Adding new column for stats (num_proc=50): 22%|##1 | 1942020/9000000 [00:04<00:11, 618172.08 examples/s]Adding new column for stats (num_proc=50): 22%|##2 | 2004390/9000000 [00:04<00:11, 619195.56 examples/s]Adding new column for stats (num_proc=50): 23%|##2 | 2069064/9000000 [00:04<00:11, 626984.35 examples/s]Adding new column for stats (num_proc=50): 24%|##3 | 2132066/9000000 [00:04<00:10, 625628.68 examples/s]Adding new column for stats (num_proc=50): 24%|##4 | 2195391/9000000 [00:04<00:10, 619129.17 examples/s]Adding new column for stats (num_proc=50): 25%|##5 | 2258025/9000000 [00:04<00:10, 620819.50 examples/s]Adding new column for stats (num_proc=50): 26%|##5 | 2320826/9000000 [00:04<00:10, 620705.42 examples/s]Adding new column for stats (num_proc=50): 26%|##6 | 2383051/9000000 [00:04<00:10, 618692.31 examples/s]Adding new column for stats (num_proc=50): 27%|##7 | 2445990/9000000 [00:04<00:10, 621241.45 examples/s]Adding new column for stats (num_proc=50): 28%|##7 | 2508147/9000000 [00:05<00:10, 621149.42 examples/s]Adding new column for stats (num_proc=50): 29%|##8 | 2570465/9000000 [00:05<00:11, 568423.62 examples/s]Adding new column for stats (num_proc=50): 29%|##9 | 2632702/9000000 [00:05<00:10, 583275.79 examples/s]Adding new column for stats (num_proc=50): 30%|##9 | 2695336/9000000 [00:05<00:10, 595366.79 examples/s]Adding new column for stats (num_proc=50): 31%|### | 2757734/9000000 [00:05<00:10, 603604.68 examples/s]Adding new column for stats (num_proc=50): 31%|###1 | 2820210/9000000 [00:05<00:10, 609798.83 examples/s]Adding new column for stats (num_proc=50): 32%|###2 | 2882879/9000000 [00:05<00:09, 614613.46 examples/s]Adding new column for stats (num_proc=50): 33%|###2 | 2947217/9000000 [00:05<00:09, 622384.28 examples/s]Adding new column for stats (num_proc=50): 33%|###3 | 3010216/9000000 [00:05<00:10, 598509.95 examples/s]Adding new column for stats (num_proc=50): 34%|###4 | 3071009/9000000 [00:06<00:09, 598126.89 examples/s]Adding new column for stats (num_proc=50): 35%|###4 | 3131285/9000000 [00:06<00:09, 588756.23 examples/s]Adding new column for stats (num_proc=50): 35%|###5 | 3191577/9000000 [00:06<00:09, 592602.66 examples/s]Adding new column for stats (num_proc=50): 36%|###6 | 3251002/9000000 [00:06<00:09, 582721.56 examples/s]Adding new column for stats (num_proc=50): 37%|###6 | 3309567/9000000 [00:06<00:10, 568655.08 examples/s]Adding new column for stats (num_proc=50): 37%|###7 | 3366814/9000000 [00:06<00:09, 566097.55 examples/s]Adding new column for stats (num_proc=50): 38%|###8 | 3423971/9000000 [00:06<00:10, 552693.11 examples/s]Adding new column for stats (num_proc=50): 39%|###8 | 3479874/9000000 [00:06<00:10, 541787.59 examples/s]Adding new column for stats (num_proc=50): 39%|###9 | 3534537/9000000 [00:06<00:10, 543170.71 examples/s]Adding new column for stats (num_proc=50): 40%|###9 | 3589571/9000000 [00:06<00:09, 544460.81 examples/s]Adding new column for stats (num_proc=50): 40%|#### | 3644173/9000000 [00:07<00:09, 542750.00 examples/s]Adding new column for stats (num_proc=50): 41%|####1 | 3698542/9000000 [00:07<00:09, 542799.40 examples/s]Adding new column for stats (num_proc=50): 42%|####1 | 3756798/9000000 [00:07<00:09, 554088.36 examples/s]Adding new column for stats (num_proc=50): 42%|####2 | 3812310/9000000 [00:07<00:09, 554279.06 examples/s]Adding new column for stats (num_proc=50): 43%|####2 | 3868895/9000000 [00:07<00:09, 557316.47 examples/s]Adding new column for stats (num_proc=50): 44%|####3 | 3928664/9000000 [00:07<00:08, 568680.55 examples/s]Adding new column for stats (num_proc=50): 44%|####4 | 3985815/9000000 [00:07<00:08, 566609.50 examples/s]Adding new column for stats (num_proc=50): 45%|####4 | 4042706/9000000 [00:07<00:08, 553117.37 examples/s]Adding new column for stats (num_proc=50): 46%|####5 | 4098311/9000000 [00:07<00:09, 536284.17 examples/s]Adding new column for stats (num_proc=50): 46%|####6 | 4152339/9000000 [00:08<00:09, 537092.18 examples/s]Adding new column for stats (num_proc=50): 47%|####6 | 4206652/9000000 [00:08<00:08, 536663.73 examples/s]Adding new column for stats (num_proc=50): 47%|####7 | 4260768/9000000 [00:08<00:08, 537636.49 examples/s]Adding new column for stats (num_proc=50): 48%|####7 | 4316358/9000000 [00:08<00:08, 542265.00 examples/s]Adding new column for stats (num_proc=50): 49%|####8 | 4372885/9000000 [00:08<00:08, 548304.32 examples/s]Adding new column for stats (num_proc=50): 49%|####9 | 4430493/9000000 [00:08<00:08, 555324.49 examples/s]Adding new column for stats (num_proc=50): 50%|####9 | 4486703/9000000 [00:08<00:08, 557034.21 examples/s]Adding new column for stats (num_proc=50): 50%|##### | 4543142/9000000 [00:08<00:07, 559100.22 examples/s]Adding new column for stats (num_proc=50): 51%|#####1 | 4599585/9000000 [00:08<00:08, 547941.26 examples/s]Adding new column for stats (num_proc=50): 52%|#####1 | 4655744/9000000 [00:08<00:07, 551587.63 examples/s]Adding new column for stats (num_proc=50): 52%|#####2 | 4711380/9000000 [00:09<00:07, 548962.12 examples/s]Adding new column for stats (num_proc=50): 53%|#####3 | 4770500/9000000 [00:09<00:07, 561060.94 examples/s]Adding new column for stats (num_proc=50): 54%|#####3 | 4827233/9000000 [00:09<00:07, 562214.06 examples/s]Adding new column for stats (num_proc=50): 54%|#####4 | 4883593/9000000 [00:09<00:07, 562205.04 examples/s]Adding new column for stats (num_proc=50): 55%|#####4 | 4940957/9000000 [00:09<00:07, 565602.01 examples/s]Adding new column for stats (num_proc=50): 56%|#####5 | 4999875/9000000 [00:09<00:07, 571157.98 examples/s]Adding new column for stats (num_proc=50): 56%|#####6 | 5060197/9000000 [00:09<00:06, 580179.58 examples/s]Adding new column for stats (num_proc=50): 57%|#####6 | 5118279/9000000 [00:09<00:06, 579604.86 examples/s]Adding new column for stats (num_proc=50): 58%|#####7 | 5176401/9000000 [00:09<00:06, 577339.86 examples/s]Adding new column for stats (num_proc=50): 58%|#####8 | 5236793/9000000 [00:09<00:06, 584987.00 examples/s]Adding new column for stats (num_proc=50): 59%|#####8 | 5297020/9000000 [00:10<00:06, 590143.41 examples/s]Adding new column for stats (num_proc=50): 60%|#####9 | 5357361/9000000 [00:10<00:06, 593101.03 examples/s]Adding new column for stats (num_proc=50): 60%|###### | 5418129/9000000 [00:10<00:06, 596942.06 examples/s]Adding new column for stats (num_proc=50): 61%|###### | 5480163/9000000 [00:10<00:05, 603164.98 examples/s]Adding new column for stats (num_proc=50): 62%|######1 | 5541327/9000000 [00:10<00:05, 605318.87 examples/s]Adding new column for stats (num_proc=50): 62%|######2 | 5602214/9000000 [00:10<00:05, 605141.74 examples/s]Adding new column for stats (num_proc=50): 63%|######2 | 5664382/9000000 [00:10<00:05, 607327.51 examples/s]Adding new column for stats (num_proc=50): 64%|######3 | 5725374/9000000 [00:10<00:05, 605916.72 examples/s]Adding new column for stats (num_proc=50): 64%|######4 | 5786311/9000000 [00:10<00:05, 605477.60 examples/s]Adding new column for stats (num_proc=50): 65%|######4 | 5847121/9000000 [00:10<00:05, 599802.03 examples/s]Adding new column for stats (num_proc=50): 66%|######5 | 5907621/9000000 [00:11<00:05, 598867.33 examples/s]Adding new column for stats (num_proc=50): 66%|######6 | 5967833/9000000 [00:11<00:05, 599632.26 examples/s]Adding new column for stats (num_proc=50): 67%|######7 | 6030347/9000000 [00:11<00:04, 606559.57 examples/s]Adding new column for stats (num_proc=50): 68%|######7 | 6092689/9000000 [00:11<00:04, 611347.80 examples/s]Adding new column for stats (num_proc=50): 68%|######8 | 6156481/9000000 [00:11<00:04, 618563.04 examples/s]Adding new column for stats (num_proc=50): 69%|######9 | 6218669/9000000 [00:11<00:04, 617809.34 examples/s]Adding new column for stats (num_proc=50): 70%|######9 | 6282535/9000000 [00:11<00:04, 623672.41 examples/s]Adding new column for stats (num_proc=50): 71%|####### | 6346202/9000000 [00:11<00:04, 627141.82 examples/s]Adding new column for stats (num_proc=50): 71%|#######1 | 6409800/9000000 [00:11<00:04, 629304.12 examples/s]Adding new column for stats (num_proc=50): 72%|#######1 | 6472900/9000000 [00:11<00:04, 623359.92 examples/s]Adding new column for stats (num_proc=50): 73%|#######2 | 6535609/9000000 [00:12<00:03, 619988.23 examples/s]Adding new column for stats (num_proc=50): 73%|#######3 | 6597635/9000000 [00:12<00:03, 618181.97 examples/s]Adding new column for stats (num_proc=50): 74%|#######4 | 6660213/9000000 [00:12<00:03, 620247.88 examples/s]Adding new column for stats (num_proc=50): 75%|#######4 | 6722447/9000000 [00:12<00:03, 616627.79 examples/s]Adding new column for stats (num_proc=50): 75%|#######5 | 6785025/9000000 [00:12<00:03, 617771.02 examples/s]Adding new column for stats (num_proc=50): 76%|#######6 | 6847020/9000000 [00:12<00:03, 617158.54 examples/s]Adding new column for stats (num_proc=50): 77%|#######6 | 6908795/9000000 [00:12<00:03, 617305.02 examples/s]Adding new column for stats (num_proc=50): 77%|#######7 | 6971378/9000000 [00:12<00:03, 617525.85 examples/s]Adding new column for stats (num_proc=50): 78%|#######8 | 7033664/9000000 [00:12<00:03, 617172.09 examples/s]Adding new column for stats (num_proc=50): 79%|#######8 | 7096108/9000000 [00:12<00:03, 614751.52 examples/s]Adding new column for stats (num_proc=50): 80%|#######9 | 7158079/9000000 [00:13<00:03, 610697.64 examples/s]Adding new column for stats (num_proc=50): 80%|######## | 7219608/9000000 [00:13<00:02, 608613.02 examples/s]Adding new column for stats (num_proc=50): 81%|######## | 7280644/9000000 [00:13<00:02, 597229.54 examples/s]Adding new column for stats (num_proc=50): 82%|########1 | 7341518/9000000 [00:13<00:02, 598673.20 examples/s]Adding new column for stats (num_proc=50): 82%|########2 | 7402014/9000000 [00:13<00:02, 590837.80 examples/s]Adding new column for stats (num_proc=50): 83%|########2 | 7461505/9000000 [00:13<00:02, 583205.84 examples/s]Adding new column for stats (num_proc=50): 84%|########3 | 7520424/9000000 [00:13<00:02, 584865.72 examples/s]Adding new column for stats (num_proc=50): 84%|########4 | 7579242/9000000 [00:13<00:02, 585075.95 examples/s]Adding new column for stats (num_proc=50): 85%|########4 | 7638670/9000000 [00:13<00:02, 585664.56 examples/s]Adding new column for stats (num_proc=50): 86%|########5 | 7697314/9000000 [00:13<00:02, 580004.80 examples/s]Adding new column for stats (num_proc=50): 86%|########6 | 7755655/9000000 [00:14<00:02, 573055.98 examples/s]Adding new column for stats (num_proc=50): 87%|########6 | 7813442/9000000 [00:14<00:02, 559589.32 examples/s]Adding new column for stats (num_proc=50): 87%|########7 | 7869836/9000000 [00:14<00:02, 558999.12 examples/s]Adding new column for stats (num_proc=50): 88%|########8 | 7926280/9000000 [00:14<00:01, 557519.53 examples/s]Adding new column for stats (num_proc=50): 89%|########8 | 7982241/9000000 [00:14<00:01, 550861.61 examples/s]Adding new column for stats (num_proc=50): 89%|########9 | 8037623/9000000 [00:14<00:01, 538827.30 examples/s]Adding new column for stats (num_proc=50): 90%|########9 | 8092238/9000000 [00:14<00:01, 527879.17 examples/s]Adding new column for stats (num_proc=50): 91%|######### | 8145714/9000000 [00:14<00:01, 506810.25 examples/s]Adding new column for stats (num_proc=50): 91%|#########1| 8196878/9000000 [00:14<00:01, 497852.55 examples/s]Adding new column for stats (num_proc=50): 92%|#########1| 8247603/9000000 [00:15<00:01, 500117.24 examples/s]Adding new column for stats (num_proc=50): 92%|#########2| 8298137/9000000 [00:15<00:03, 200051.45 examples/s]Adding new column for stats (num_proc=50): 93%|#########2| 8336065/9000000 [00:15<00:02, 223443.40 examples/s]Adding new column for stats (num_proc=50): 93%|#########3| 8413826/9000000 [00:15<00:01, 299008.77 examples/s]Adding new column for stats (num_proc=50): 94%|#########4| 8463950/9000000 [00:16<00:01, 336158.75 examples/s]Adding new column for stats (num_proc=50): 95%|#########4| 8510624/9000000 [00:16<00:01, 363301.71 examples/s]Adding new column for stats (num_proc=50): 95%|#########5| 8556979/9000000 [00:16<00:01, 385362.76 examples/s]Adding new column for stats (num_proc=50): 96%|#########5| 8603318/9000000 [00:16<00:00, 402975.17 examples/s]Adding new column for stats (num_proc=50): 96%|#########6| 8649509/9000000 [00:16<00:00, 415210.29 examples/s]Adding new column for stats (num_proc=50): 97%|#########6| 8695665/9000000 [00:16<00:00, 424294.68 examples/s]Adding new column for stats (num_proc=50): 97%|#########7| 8741456/9000000 [00:16<00:00, 387068.27 examples/s]Adding new column for stats (num_proc=50): 98%|#########7| 8783462/9000000 [00:16<00:00, 389129.59 examples/s]Adding new column for stats (num_proc=50): 98%|#########8| 8824422/9000000 [00:16<00:00, 388267.58 examples/s]Adding new column for stats (num_proc=50): 98%|#########8| 8864960/9000000 [00:17<00:00, 344810.95 examples/s]Adding new column for stats (num_proc=50): 99%|#########8| 8901322/9000000 [00:17<00:00, 307217.36 examples/s]Adding new column for stats (num_proc=50): 99%|#########9| 8933804/9000000 [00:17<00:00, 217815.33 examples/s]Adding new column for stats (num_proc=50): 100%|#########9| 8960472/9000000 [00:17<00:00, 165029.32 examples/s]Adding new column for stats (num_proc=50): 100%|#########9| 8981927/9000000 [00:18<00:00, 103132.04 examples/s]Adding new column for stats (num_proc=50): 100%|#########9| 8983695/9000000 [00:38<00:00, 103132.04 examples/s]Adding new column for stats (num_proc=50): 100%|#########9| 8983695/9000000 [02:36<00:30, 533.56 examples/s] Adding new column for stats (num_proc=50): 100%|#########9| 8984062/9000000 [02:38<00:30, 522.26 examples/s]Adding new column for stats (num_proc=50): 100%|#########9| 8989912/9000000 [02:58<00:19, 522.26 examples/s]Adding new column for stats (num_proc=50): 100%|#########9| 8990032/9000000 [02:58<00:20, 476.09 examples/s]Adding new column for stats (num_proc=50): 100%|#########9| 8990293/9000000 [02:58<00:20, 478.63 examples/s]Adding new column for stats (num_proc=50): 100%|#########9| 8998566/9000000 [03:02<00:02, 606.71 examples/s]Simbert不能正常使用,除非你安装:bert4keras、tensorflow ,为了安装快捷,没有默认安装.... module 'keras' has no attribute 'engine'
Adding new column for stats (num_proc=50): 100%|##########| 9000000/9000000 [03:03<00:00, 49122.48 examples/s]
python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 0/9000000 [00:00<?, ? examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 1000/9000000 [1:08:37<10292:44:51, 4.12s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 2000/9000000 [1:12:00<4535:29:14, 1.81s/ examples] python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 3000/9000000 [1:12:13<2479:58:15, 1.01 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 3000/9000000 [1:12:31<2479:58:15, 1.01 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 4000/9000000 [1:12:40<1527:04:42, 1.64 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 4000/9000000 [1:12:51<1527:04:42, 1.64 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 5000/9000000 [1:13:25<1017:11:13, 2.46 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 5000/9000000 [1:13:41<1017:11:13, 2.46 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 6000/9000000 [1:14:39<733:19:24, 3.41 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 6000/9000000 [1:14:51<733:19:24, 3.41 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 7000/9000000 [1:15:34<538:45:07, 4.64 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 7000/9000000 [1:15:51<538:45:07, 4.64 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 8000/9000000 [1:15:51<381:11:09, 6.55 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 8000/9000000 [1:16:11<381:11:09, 6.55 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 9000/9000000 [1:16:38<298:39:54, 8.36 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 9000/9000000 [1:16:51<298:39:54, 8.36 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 10000/9000000 [1:17:04<226:03:13, 11.05 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 11000/9000000 [1:17:04<157:09:25, 15.89 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 12000/9000000 [1:17:11<114:07:01, 21.88 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 12000/9000000 [1:17:21<114:07:01, 21.88 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 13000/9000000 [1:17:30<94:31:21, 26.41 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 14000/9000000 [1:17:38<71:34:56, 34.87 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 15000/9000000 [1:17:50<59:15:46, 42.11 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 15000/9000000 [1:18:01<59:15:46, 42.11 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 16000/9000000 [1:18:07<54:09:15, 46.08 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 16000/9000000 [1:18:21<54:09:15, 46.08 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 17000/9000000 [1:18:37<60:21:41, 41.34 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 18000/9000000 [1:18:39<43:56:18, 56.78 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 19000/9000000 [1:18:45<35:16:44, 70.71 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 20000/9000000 [1:18:54<30:56:33, 80.62 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 21000/9000000 [1:18:57<23:54:49, 104.30 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 22000/9000000 [1:18:59<18:13:38, 136.82 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 23000/9000000 [1:18:59<12:59:10, 192.02 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 24000/9000000 [1:19:04<12:31:08, 199.16 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 25000/9000000 [1:19:11<13:55:05, 179.12 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 26000/9000000 [1:19:12<10:23:53, 239.73 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 27000/9000000 [1:19:21<14:26:33, 172.58 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 28000/9000000 [1:19:33<19:16:15, 129.32 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 29000/9000000 [1:19:44<21:48:54, 114.23 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 31000/9000000 [1:19:58<19:38:56, 126.80 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 32000/9000000 [1:20:02<16:56:41, 147.01 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 33000/9000000 [1:20:05<14:47:57, 168.31 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 34000/9000000 [1:20:07<12:11:43, 204.22 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 35000/9000000 [1:20:10<10:17:11, 242.09 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 36000/9000000 [1:20:13<9:32:43, 260.86 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 37000/9000000 [1:20:16<8:58:51, 277.22 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 38000/9000000 [1:20:18<8:17:58, 299.94 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 38000/9000000 [1:20:31<8:17:58, 299.94 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 39000/9000000 [1:20:39<20:58:00, 118.72 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 40000/9000000 [1:20:46<19:43:58, 126.13 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 40000/9000000 [1:21:01<19:43:58, 126.13 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 41000/9000000 [1:21:16<36:15:42, 68.63 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 42000/9000000 [1:21:23<30:44:58, 80.92 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 43000/9000000 [1:21:32<28:32:15, 87.19 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 44000/9000000 [1:21:42<27:15:34, 91.26 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 0%| | 45000/9000000 [1:21:43<19:31:25, 127.41 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 46000/9000000 [1:21:48<17:10:36, 144.80 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 46000/9000000 [1:22:01<17:10:36, 144.80 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 47000/9000000 [1:22:16<33:33:20, 74.11 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 48000/9000000 [1:22:22<27:39:03, 89.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 48000/9000000 [1:22:41<27:39:03, 89.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 49000/9000000 [1:23:01<48:25:19, 51.35 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 49000/9000000 [1:23:21<48:25:19, 51.35 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 50000/9000000 [1:24:05<81:54:55, 30.35 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 50000/9000000 [1:24:21<81:54:55, 30.35 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_a9a3383a-fadc-4f25-a05d-b33f78b64eb1.py:62: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_a9a3383a-fadc-4f25-a05d-b33f78b64eb1.py:77: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_a9a3383a-fadc-4f25-a05d-b33f78b64eb1.py:89: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_a9a3383a-fadc-4f25-a05d-b33f78b64eb1.py:97: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_a9a3383a-fadc-4f25-a05d-b33f78b64eb1.py:108: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_a9a3383a-fadc-4f25-a05d-b33f78b64eb1.py:118: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 51000/9000000 [2:22:27<2668:12:03, 1.07s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 52000/9000000 [2:30:01<2206:15:14, 1.13 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 53000/9000000 [2:40:55<2031:52:25, 1.22 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 54000/9000000 [2:43:26<1534:14:01, 1.62 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 55000/9000000 [2:43:30<1076:57:22, 2.31 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 55000/9000000 [2:43:41<1076:57:22, 2.31 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 56000/9000000 [2:44:00<776:27:20, 3.20 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 56000/9000000 [2:44:11<776:27:20, 3.20 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 57000/9000000 [2:44:41<573:59:38, 4.33 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 57000/9000000 [2:45:01<573:59:38, 4.33 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 58000/9000000 [2:45:05<419:09:08, 5.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 58000/9000000 [2:45:21<419:09:08, 5.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 59000/9000000 [2:45:41<320:11:45, 7.76 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 59000/9000000 [2:45:51<320:11:45, 7.76 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 60000/9000000 [2:46:06<242:43:56, 10.23 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 60000/9000000 [2:46:21<242:43:56, 10.23 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 61000/9000000 [2:46:56<207:42:48, 11.95 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 61000/9000000 [2:47:11<207:42:48, 11.95 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 62000/9000000 [2:48:57<235:29:29, 10.54 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 63000/9000000 [2:49:31<189:47:58, 13.08 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 64000/9000000 [2:49:38<138:10:50, 17.96 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 64000/9000000 [2:49:51<138:10:50, 17.96 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 65000/9000000 [2:50:21<128:44:57, 19.28 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 66000/9000000 [2:50:33<98:46:06, 25.13 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 67000/9000000 [2:50:38<73:23:11, 33.81 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 68000/9000000 [2:50:46<57:12:16, 43.37 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 68000/9000000 [2:51:01<57:12:16, 43.37 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 69000/9000000 [2:51:37<77:49:03, 31.88 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 69000/9000000 [2:51:51<77:49:03, 31.88 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 70000/9000000 [2:53:24<134:17:08, 18.47 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 71000/9000000 [2:53:48<111:29:42, 22.25 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 71000/9000000 [2:54:01<111:29:42, 22.25 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 72000/9000000 [2:54:18<100:36:18, 24.65 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 73000/9000000 [2:54:23<74:04:29, 33.48 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 74000/9000000 [2:54:29<56:24:06, 43.96 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 74000/9000000 [2:54:41<56:24:06, 43.96 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 75000/9000000 [2:55:01<63:19:45, 39.15 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 76000/9000000 [2:55:04<46:32:56, 53.25 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 77000/9000000 [2:55:18<42:39:09, 58.11 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 77000/9000000 [2:55:31<42:39:09, 58.11 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 78000/9000000 [2:56:37<88:38:44, 27.96 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 79000/9000000 [2:56:51<72:32:42, 34.16 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 80000/9000000 [2:56:55<54:11:38, 45.72 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 81000/9000000 [2:57:00<40:55:44, 60.53 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 81000/9000000 [2:57:11<40:55:44, 60.53 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 82000/9000000 [2:57:12<37:51:25, 65.44 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 83000/9000000 [2:57:19<31:34:38, 78.44 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 83000/9000000 [2:57:31<31:34:38, 78.44 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 84000/9000000 [2:57:35<34:28:05, 71.85 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 84000/9000000 [2:57:51<34:28:05, 71.85 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 85000/9000000 [2:58:41<72:57:36, 33.94 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 86000/9000000 [2:58:48<55:54:53, 44.28 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 87000/9000000 [2:58:49<39:54:27, 62.04 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 87000/9000000 [2:59:01<39:54:27, 62.04 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 88000/9000000 [2:59:07<41:17:15, 59.96 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%| | 89000/9000000 [2:59:08<29:47:56, 83.07 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 90000/9000000 [2:59:11<22:48:39, 108.50 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 90000/9000000 [2:59:21<22:48:39, 108.50 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 91000/9000000 [2:59:26<27:07:32, 91.23 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 91000/9000000 [2:59:41<27:07:32, 91.23 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 92000/9000000 [3:00:13<54:32:11, 45.37 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 93000/9000000 [3:00:22<44:34:33, 55.50 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 93000/9000000 [3:00:41<44:34:33, 55.50 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 94000/9000000 [3:00:57<57:01:32, 43.38 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 94000/9000000 [3:01:11<57:01:32, 43.38 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 95000/9000000 [3:02:00<86:39:22, 28.55 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 95000/9000000 [3:02:11<86:39:22, 28.55 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 96000/9000000 [3:02:48<96:04:40, 25.74 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 97000/9000000 [3:02:52<70:21:15, 35.15 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 97000/9000000 [3:03:11<70:21:15, 35.15 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 98000/9000000 [3:04:20<114:39:43, 21.57 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 98000/9000000 [3:04:31<114:39:43, 21.57 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 99000/9000000 [3:05:28<130:34:48, 18.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 99000/9000000 [3:05:41<130:34:48, 18.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 100000/9000000 [3:10:00<293:26:17, 8.43 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 101000/9000000 [4:23:33<3477:34:49, 1.41s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 102000/9000000 [4:28:29<2653:45:33, 1.07s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 103000/9000000 [4:28:30<1858:24:43, 1.33 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 103000/9000000 [4:28:41<1858:24:43, 1.33 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 104000/9000000 [4:33:33<1524:46:56, 1.62 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 105000/9000000 [4:35:59<1175:52:40, 2.10 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 106000/9000000 [4:40:18<1014:40:01, 2.43 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 107000/9000000 [4:43:19<844:17:13, 2.93 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 108000/9000000 [4:43:36<603:25:27, 4.09 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 108000/9000000 [4:43:51<603:25:27, 4.09 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_12a976fb-f259-4fe7-bcba-2c2cc8c29ed9.py:17: expected `:` followed by a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 109000/9000000 [4:49:54<702:30:43, 3.52 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 110000/9000000 [4:51:40<570:26:41, 4.33 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 111000/9000000 [4:51:53<408:40:27, 6.04 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 111000/9000000 [4:52:11<408:40:27, 6.04 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 112000/9000000 [4:57:43<545:10:26, 4.53 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 113000/9000000 [4:58:23<411:47:39, 5.99 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 113000/9000000 [4:58:41<411:47:39, 5.99 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 114000/9000000 [5:00:18<373:10:53, 6.61 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 115000/9000000 [5:00:32<271:28:07, 9.09 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 115000/9000000 [5:00:51<271:28:07, 9.09 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 116000/9000000 [5:01:49<246:46:09, 10.00 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 116000/9000000 [5:02:01<246:46:09, 10.00 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 117000/9000000 [5:02:21<196:46:18, 12.54 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 117000/9000000 [5:02:31<196:46:18, 12.54 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 118000/9000000 [5:02:39<150:59:28, 16.34 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 119000/9000000 [5:02:44<109:33:00, 22.52 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 120000/9000000 [5:02:58<87:06:57, 28.31 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 120000/9000000 [5:03:11<87:06:57, 28.31 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 121000/9000000 [5:03:30<84:08:36, 29.31 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 121000/9000000 [5:03:41<84:08:36, 29.31 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 122000/9000000 [5:04:50<118:33:36, 20.80 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 122000/9000000 [5:05:01<118:33:36, 20.80 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 123000/9000000 [5:05:06<94:33:50, 26.08 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 123000/9000000 [5:05:21<94:33:50, 26.08 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 124000/9000000 [5:06:06<110:43:08, 22.27 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 124000/9000000 [5:06:21<110:43:08, 22.27 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 125000/9000000 [5:07:22<133:26:02, 18.48 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 126000/9000000 [5:07:29<98:39:45, 24.98 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 127000/9000000 [5:07:32<71:12:19, 34.61 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 128000/9000000 [5:07:35<52:29:41, 46.95 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 129000/9000000 [5:07:41<40:54:29, 60.24 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 129000/9000000 [5:07:51<40:54:29, 60.24 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 130000/9000000 [5:07:58<41:22:30, 59.55 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 130000/9000000 [5:08:11<41:22:30, 59.55 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 131000/9000000 [5:08:39<58:51:11, 41.86 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 131000/9000000 [5:08:51<58:51:11, 41.86 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 132000/9000000 [5:09:32<80:38:43, 30.55 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 133000/9000000 [5:09:36<59:07:10, 41.66 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 134000/9000000 [5:09:40<44:23:13, 55.48 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 1%|1 | 134000/9000000 [5:09:51<44:23:13, 55.48 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 135000/9000000 [5:10:44<78:32:48, 31.35 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 135000/9000000 [5:11:01<78:32:48, 31.35 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 136000/9000000 [5:11:57<108:42:57, 22.65 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 136000/9000000 [5:12:11<108:42:57, 22.65 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 137000/9000000 [5:12:16<90:29:15, 27.21 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 137000/9000000 [5:12:31<90:29:15, 27.21 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 138000/9000000 [5:13:33<119:40:43, 20.57 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 138000/9000000 [5:13:51<119:40:43, 20.57 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 139000/9000000 [5:13:56<101:19:43, 24.29 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 139000/9000000 [5:14:11<101:19:43, 24.29 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 140000/9000000 [5:14:55<114:16:35, 21.54 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 140000/9000000 [5:15:11<114:16:35, 21.54 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 141000/9000000 [5:16:53<167:00:09, 14.74 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 142000/9000000 [5:17:41<152:25:49, 16.14 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 142000/9000000 [5:17:51<152:25:49, 16.14 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 143000/9000000 [5:18:03<123:06:22, 19.98 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 143000/9000000 [5:18:21<123:06:22, 19.98 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 144000/9000000 [5:18:46<117:52:47, 20.87 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 144000/9000000 [5:19:01<117:52:47, 20.87 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 145000/9000000 [5:21:11<189:09:19, 13.00 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 146000/9000000 [5:22:32<192:04:27, 12.80 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 146000/9000000 [5:22:51<192:04:27, 12.80 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 147000/9000000 [5:23:44<187:47:02, 13.10 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 147000/9000000 [5:24:02<187:47:02, 13.10 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 148000/9000000 [5:24:15<154:21:47, 15.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 148000/9000000 [5:24:32<154:21:47, 15.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 149000/9000000 [5:26:14<195:34:19, 12.57 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 150000/9000000 [5:28:28<235:47:30, 10.43 examples/s]warning: Invalid `# ruff: noqa` directive at /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_8dd5ef35-e51c-4f4f-9bb6-00edd5f51995.py:8: expected `:` followed by a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 151000/9000000 [6:55:10<4001:11:42, 1.63s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 152000/9000000 [7:00:24<3031:43:51, 1.23s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 153000/9000000 [7:01:42<2179:37:15, 1.13 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 153000/9000000 [7:02:02<2179:37:15, 1.13 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 154000/9000000 [7:05:29<1693:02:48, 1.45 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 155000/9000000 [7:08:13<1305:55:50, 1.88 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 156000/9000000 [7:09:18<961:34:33, 2.55 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 156000/9000000 [7:09:32<961:34:33, 2.55 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 157000/9000000 [7:10:54<744:04:19, 3.30 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 157000/9000000 [7:11:12<744:04:19, 3.30 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 158000/9000000 [7:11:18<538:20:50, 4.56 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 158000/9000000 [7:11:32<538:20:50, 4.56 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_582bb0e1-2019-443c-b6e1-a374d3af17d8.py:131: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 159000/9000000 [7:13:44<484:46:37, 5.07 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 160000/9000000 [7:20:51<653:27:18, 3.76 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 161000/9000000 [7:21:23<480:45:26, 5.11 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 162000/9000000 [7:21:25<337:52:43, 7.27 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 162000/9000000 [7:21:42<337:52:43, 7.27 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 163000/9000000 [7:22:02<264:09:12, 9.29 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 163000/9000000 [7:22:22<264:09:12, 9.29 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 164000/9000000 [7:22:30<205:21:11, 11.95 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 164000/9000000 [7:22:42<205:21:11, 11.95 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 165000/9000000 [7:22:44<153:54:31, 15.95 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 165000/9000000 [7:23:02<153:54:31, 15.95 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 166000/9000000 [7:23:03<122:07:35, 20.09 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 167000/9000000 [7:23:21<98:12:16, 24.98 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 167000/9000000 [7:23:32<98:12:16, 24.98 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 168000/9000000 [7:24:41<127:48:24, 19.20 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 169000/9000000 [7:24:51<96:38:25, 25.38 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 169000/9000000 [7:25:02<96:38:25, 25.38 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 170000/9000000 [7:25:29<96:09:57, 25.51 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 170000/9000000 [7:25:42<96:09:57, 25.51 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 171000/9000000 [7:27:57<176:05:10, 13.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 172000/9000000 [7:27:59<124:51:40, 19.64 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 172000/9000000 [7:28:12<124:51:40, 19.64 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 173000/9000000 [7:28:15<98:57:59, 24.78 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 174000/9000000 [7:28:31<81:03:37, 30.24 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 174000/9000000 [7:28:42<81:03:37, 30.24 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 175000/9000000 [7:28:49<69:47:23, 35.13 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 175000/9000000 [7:29:02<69:47:23, 35.13 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 176000/9000000 [7:30:41<131:29:47, 18.64 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 177000/9000000 [7:32:03<152:25:44, 16.08 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 178000/9000000 [7:32:12<113:09:29, 21.66 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 178000/9000000 [7:32:32<113:09:29, 21.66 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|1 | 179000/9000000 [7:32:45<103:17:47, 23.72 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 180000/9000000 [7:33:01<83:41:05, 29.28 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 180000/9000000 [7:33:12<83:41:05, 29.28 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 181000/9000000 [7:33:39<86:52:01, 28.20 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 181000/9000000 [7:33:52<86:52:01, 28.20 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 182000/9000000 [7:34:17<88:58:31, 27.53 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 182000/9000000 [7:34:32<88:58:31, 27.53 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 183000/9000000 [7:34:42<80:03:56, 30.59 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 184000/9000000 [7:34:50<61:52:40, 39.58 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 184000/9000000 [7:35:02<61:52:40, 39.58 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 185000/9000000 [7:35:46<84:48:45, 28.87 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 186000/9000000 [7:35:57<67:04:36, 36.50 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 186000/9000000 [7:36:12<67:04:36, 36.50 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 187000/9000000 [7:36:52<87:39:48, 27.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 187000/9000000 [7:37:02<87:39:48, 27.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 188000/9000000 [7:37:13<76:58:42, 31.80 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 188000/9000000 [7:37:32<76:58:42, 31.80 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 189000/9000000 [7:37:35<69:40:26, 35.13 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 189000/9000000 [7:37:52<69:40:26, 35.13 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 190000/9000000 [7:38:29<88:25:48, 27.67 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 191000/9000000 [7:38:37<68:00:37, 35.98 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 191000/9000000 [7:38:52<68:00:37, 35.98 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 192000/9000000 [7:42:42<227:04:37, 10.77 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 193000/9000000 [7:42:47<162:37:14, 15.04 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 193000/9000000 [7:43:02<162:37:14, 15.04 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 194000/9000000 [7:49:09<394:24:49, 6.20 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 195000/9000000 [7:49:22<285:22:28, 8.57 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 195000/9000000 [7:49:32<285:22:28, 8.57 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 196000/9000000 [7:50:56<268:54:53, 9.09 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 196000/9000000 [7:51:12<268:54:53, 9.09 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 197000/9000000 [7:52:32<258:45:33, 9.45 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 198000/9000000 [7:52:34<182:46:27, 13.38 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 198000/9000000 [7:52:52<182:46:27, 13.38 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 199000/9000000 [7:53:14<157:11:38, 15.55 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 199000/9000000 [7:53:32<157:11:38, 15.55 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 200000/9000000 [7:58:49<355:39:56, 6.87 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_657abf65-63d2-47a0-9f98-229115ba4006.py:18: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_1e2b356a-fca3-4b31-a3b2-5032b802917d.py:19: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Unexpected `# ruff: noqa` directive at /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_a2a0894c-fb89-40c9-985c-e1e68f7682f1.py:10. File-level suppression comments must appear on their own line. For line-level suppression, omit the `ruff:` prefix.
python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 201000/9000000 [9:19:41<3806:28:18, 1.56s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 202000/9000000 [9:19:44<2666:28:28, 1.09s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 202000/9000000 [9:20:02<2666:28:28, 1.09s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 203000/9000000 [9:23:28<2030:49:50, 1.20 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 204000/9000000 [9:24:49<1480:27:17, 1.65 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 204000/9000000 [9:25:02<1480:27:17, 1.65 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 205000/9000000 [9:26:22<1104:41:13, 2.21 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 205000/9000000 [9:26:42<1104:41:13, 2.21 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 206000/9000000 [9:26:46<790:21:25, 3.09 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 206000/9000000 [9:27:02<790:21:25, 3.09 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_a10e4b27-2891-479e-9f9a-dc0ae258db79.py:6: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_662eddbf-9d91-418c-b96a-20abe8fd2fd7.py:10: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 207000/9000000 [9:37:40<1032:44:47, 2.37 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 208000/9000000 [9:40:15<836:06:00, 2.92 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 209000/9000000 [9:44:48<785:22:05, 3.11 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 210000/9000000 [9:44:59<557:59:24, 4.38 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 211000/9000000 [9:45:12<557:55:36, 4.38 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 212000/9000000 [9:50:28<485:38:42, 5.03 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 213000/9000000 [9:50:47<376:43:30, 6.48 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 213000/9000000 [9:51:02<376:43:30, 6.48 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_e83c739e-04f5-40a0-aa56-3f35b2dc782b.py:105: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_e83c739e-04f5-40a0-aa56-3f35b2dc782b.py:158: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 214000/9000000 [9:52:37<348:11:59, 7.01 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 215000/9000000 [9:53:11<276:09:53, 8.84 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 215000/9000000 [9:53:22<276:09:53, 8.84 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 216000/9000000 [9:53:38<217:12:05, 11.23 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 216000/9000000 [9:53:52<217:12:05, 11.23 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 217000/9000000 [9:53:55<166:50:27, 14.62 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 217000/9000000 [9:54:12<166:50:27, 14.62 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 218000/9000000 [9:54:18<135:06:00, 18.06 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 218000/9000000 [9:54:32<135:06:00, 18.06 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 219000/9000000 [9:55:00<125:16:47, 19.47 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 219000/9000000 [9:55:12<125:16:47, 19.47 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 220000/9000000 [9:56:15<142:05:06, 17.16 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 220000/9000000 [9:56:32<142:05:06, 17.16 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 221000/9000000 [9:56:55<128:48:37, 18.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 221000/9000000 [9:57:12<128:48:37, 18.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 222000/9000000 [9:58:24<155:29:22, 15.68 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 223000/9000000 [9:58:26<110:29:08, 22.07 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 223000/9000000 [9:58:42<110:29:08, 22.07 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 224000/9000000 [9:59:00<101:37:54, 23.99 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 224000/9000000 [9:59:12<101:37:54, 23.99 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 225000/9000000 [9:59:30<93:11:56, 26.15 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 2%|2 | 225000/9000000 [9:59:42<93:11:56, 26.15 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 226000/9000000 [9:59:50<79:56:54, 30.48 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 226000/9000000 [10:00:02<79:56:54, 30.48 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 227000/9000000 [10:00:20<77:49:20, 31.31 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 227000/9000000 [10:00:32<77:49:20, 31.31 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 228000/9000000 [10:01:59<126:57:50, 19.19 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 228000/9000000 [10:02:12<126:57:50, 19.19 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 229000/9000000 [10:02:32<113:14:43, 21.51 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 229000/9000000 [10:02:52<113:14:43, 21.51 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 230000/9000000 [10:04:00<143:08:18, 17.02 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 230000/9000000 [10:04:12<143:08:18, 17.02 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 231000/9000000 [10:04:52<138:34:55, 17.58 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 231000/9000000 [10:05:02<138:34:55, 17.58 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 232000/9000000 [10:06:01<147:27:01, 16.52 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 232000/9000000 [10:06:12<147:27:01, 16.52 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 233000/9000000 [10:07:09<153:04:24, 15.91 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 233000/9000000 [10:07:22<153:04:24, 15.91 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 234000/9000000 [10:08:11<152:15:27, 15.99 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 235000/9000000 [10:08:16<109:53:24, 22.16 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 235000/9000000 [10:08:32<109:53:24, 22.16 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 236000/9000000 [10:09:04<111:55:00, 21.75 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 236000/9000000 [10:09:22<111:55:00, 21.75 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 237000/9000000 [10:09:23<92:29:20, 26.32 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 237000/9000000 [10:09:42<92:29:20, 26.32 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 238000/9000000 [10:12:01<179:56:09, 13.53 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 239000/9000000 [10:12:34<150:10:01, 16.21 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 239000/9000000 [10:12:52<150:10:01, 16.21 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 240000/9000000 [10:14:14<178:21:50, 13.64 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 241000/9000000 [10:14:40<143:11:28, 16.99 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 241000/9000000 [10:14:52<143:11:28, 16.99 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 242000/9000000 [10:15:34<140:16:25, 17.34 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 242000/9000000 [10:15:52<140:16:25, 17.34 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 243000/9000000 [10:18:25<222:58:35, 10.91 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 244000/9000000 [10:22:05<316:22:00, 7.69 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 245000/9000000 [10:23:40<290:20:18, 8.38 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 245000/9000000 [10:23:52<290:20:18, 8.38 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 246000/9000000 [10:25:35<287:37:00, 8.45 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 247000/9000000 [10:26:44<251:15:37, 9.68 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 248000/9000000 [10:26:50<180:21:43, 13.48 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 248000/9000000 [10:27:02<180:21:43, 13.48 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 249000/9000000 [10:33:49<431:36:50, 5.63 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 250000/9000000 [10:34:06<314:38:17, 7.72 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 250000/9000000 [10:34:22<314:38:17, 7.72 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 251000/9000000 [11:59:02<3935:41:50, 1.62s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 252000/9000000 [12:10:44<3266:18:23, 1.34s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 253000/9000000 [12:13:49<2420:54:12, 1.00 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_43497036-dda8-4d77-90bf-b10fc268ea20.py:11: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_10ceba5d-06f5-45b5-98d8-9851a362c090.py:5: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 254000/9000000 [12:16:34<1814:45:29, 1.34 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 255000/9000000 [12:17:33<1313:04:19, 1.85 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 255000/9000000 [12:17:52<1313:04:19, 1.85 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 256000/9000000 [12:22:15<1124:46:06, 2.16 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 257000/9000000 [12:23:36<846:01:21, 2.87 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 257000/9000000 [12:23:52<846:01:21, 2.87 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 258000/9000000 [12:24:10<617:04:42, 3.94 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 258000/9000000 [12:24:22<617:04:42, 3.94 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_8eb7dd51-710f-421e-b332-87192d5e4a12.py:7: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 259000/9000000 [12:35:59<948:43:52, 2.56 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 260000/9000000 [12:37:57<749:26:37, 3.24 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 261000/9000000 [12:39:48<605:45:25, 4.01 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_fe20d0a0-03db-4c4c-b0d1-a924d0e02814.py:5: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 262000/9000000 [12:43:00<563:38:53, 4.31 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 263000/9000000 [12:43:53<433:12:16, 5.60 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 263000/9000000 [12:44:12<433:12:16, 5.60 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 264000/9000000 [12:46:09<401:58:41, 6.04 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 265000/9000000 [12:47:00<318:53:38, 7.61 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 266000/9000000 [12:47:01<223:38:02, 10.85 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 266000/9000000 [12:47:12<223:38:02, 10.85 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 267000/9000000 [12:47:49<191:16:48, 12.68 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 267000/9000000 [12:48:02<191:16:48, 12.68 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 268000/9000000 [12:49:13<195:21:25, 12.42 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 268000/9000000 [12:49:32<195:21:25, 12.42 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 269000/9000000 [12:49:36<153:14:52, 15.83 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|2 | 269000/9000000 [12:49:52<153:14:52, 15.83 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 270000/9000000 [12:50:09<131:08:47, 18.49 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 270000/9000000 [12:50:22<131:08:47, 18.49 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 271000/9000000 [12:51:43<160:29:59, 15.11 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 271000/9000000 [12:52:02<160:29:59, 15.11 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 272000/9000000 [12:52:10<132:10:29, 18.34 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 272000/9000000 [12:52:22<132:10:29, 18.34 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 273000/9000000 [12:54:36<198:12:13, 12.23 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 274000/9000000 [12:54:53<151:15:51, 16.02 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 274000/9000000 [12:55:12<151:15:51, 16.02 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 275000/9000000 [12:55:24<128:41:45, 18.83 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 276000/9000000 [12:55:41<101:52:40, 23.79 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 276000/9000000 [12:55:52<101:52:40, 23.79 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_380a3525-9f57-42dc-bc31-465b468b158d.py:17: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_a32ffd7f-a8c0-4ffc-b5a7-c100c89421ff.py:5: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 277000/9000000 [12:59:21<231:44:31, 10.46 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 278000/9000000 [13:00:02<191:35:29, 12.65 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 278000/9000000 [13:00:12<191:35:29, 12.65 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 279000/9000000 [13:01:51<213:25:25, 11.35 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 280000/9000000 [13:05:42<317:13:09, 7.64 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 281000/9000000 [13:05:50<228:10:26, 10.61 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 281000/9000000 [13:06:02<228:10:26, 10.61 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 282000/9000000 [13:07:03<212:26:38, 11.40 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 283000/9000000 [13:07:08<152:10:57, 15.91 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 283000/9000000 [13:07:22<152:10:57, 15.91 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 284000/9000000 [13:07:33<124:36:13, 19.43 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 284000/9000000 [13:07:52<124:36:13, 19.43 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 285000/9000000 [13:08:01<107:46:10, 22.46 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 285000/9000000 [13:08:12<107:46:10, 22.46 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 286000/9000000 [13:08:14<85:04:22, 28.45 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 286000/9000000 [13:08:32<85:04:22, 28.45 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 287000/9000000 [13:12:06<227:30:12, 10.64 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 288000/9000000 [13:13:53<237:23:32, 10.19 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 289000/9000000 [13:14:06<175:33:46, 13.78 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 289000/9000000 [13:14:22<175:33:46, 13.78 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 290000/9000000 [13:15:33<186:00:16, 13.01 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 291000/9000000 [13:15:40<135:22:41, 17.87 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 291000/9000000 [13:15:53<135:22:41, 17.87 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 292000/9000000 [13:16:04<112:15:27, 21.55 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 293000/9000000 [13:16:08<81:19:09, 29.74 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 293000/9000000 [13:16:23<81:19:09, 29.74 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 294000/9000000 [13:16:56<91:40:33, 26.38 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 294000/9000000 [13:17:13<91:40:33, 26.38 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 295000/9000000 [13:22:42<315:14:36, 7.67 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 296000/9000000 [13:26:26<383:06:45, 6.31 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 297000/9000000 [13:32:07<515:17:27, 4.69 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 298000/9000000 [13:34:42<473:05:38, 5.11 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 299000/9000000 [13:38:38<502:10:32, 4.81 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 300000/9000000 [13:44:12<593:40:50, 4.07 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_fc10b680-1bdc-40ab-b40f-11cc21dcdf4a.py:113: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_c9abaa37-a8b1-4181-b663-34b3ad51cdb4.py:197: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 301000/9000000 [15:07:36<4042:56:32, 1.67s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 302000/9000000 [15:29:25<3778:49:43, 1.56s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 303000/9000000 [15:31:05<2717:11:24, 1.12s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 303000/9000000 [15:31:23<2717:11:24, 1.12s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 304000/9000000 [15:31:41<1928:00:49, 1.25 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 304000/9000000 [15:31:53<1928:00:49, 1.25 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 305000/9000000 [15:35:33<1517:12:16, 1.59 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 306000/9000000 [15:36:18<1094:34:41, 2.21 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 306000/9000000 [15:36:33<1094:34:41, 2.21 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 307000/9000000 [15:38:02<841:16:55, 2.87 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 308000/9000000 [15:48:59<1065:01:26, 2.27 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 309000/9000000 [16:00:11<1232:15:42, 1.96 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 310000/9000000 [16:02:39<969:38:05, 2.49 examples/s] warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_4e0772fb-46f9-401b-9977-72269a7403c5.py:2: expected `:` followed by a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 311000/9000000 [16:03:38<720:57:09, 3.35 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 311000/9000000 [16:03:53<720:57:09, 3.35 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 312000/9000000 [16:03:57<518:31:31, 4.65 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 312000/9000000 [16:04:13<518:31:31, 4.65 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 313000/9000000 [16:04:14<375:29:53, 6.43 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_9b8444d5-3bc5-45a3-b67c-f9d602212201.py:2: expected `:` followed by a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 313000/9000000 [16:04:33<375:29:53, 6.43 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 314000/9000000 [16:05:32<318:52:00, 7.57 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 3%|3 | 314000/9000000 [16:05:43<318:52:00, 7.57 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 315000/9000000 [16:05:54<239:09:53, 10.09 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 315000/9000000 [16:06:13<239:09:53, 10.09 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 316000/9000000 [16:11:56<429:15:15, 5.62 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 317000/9000000 [16:11:56<300:49:30, 8.02 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 317000/9000000 [16:12:13<300:49:30, 8.02 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 318000/9000000 [16:14:33<324:12:06, 7.44 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 319000/9000000 [16:16:54<328:47:55, 7.33 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 320000/9000000 [16:18:37<304:36:19, 7.92 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 321000/9000000 [16:18:52<224:11:10, 10.75 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 321000/9000000 [16:19:03<224:11:10, 10.75 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 322000/9000000 [16:22:41<322:39:55, 7.47 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 323000/9000000 [16:25:08<331:33:42, 7.27 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 324000/9000000 [16:26:07<275:11:44, 8.76 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 324000/9000000 [16:26:23<275:11:44, 8.76 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 325000/9000000 [16:28:55<313:51:03, 7.68 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 326000/9000000 [16:29:55<262:53:42, 9.17 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 327000/9000000 [16:30:03<189:40:17, 12.70 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 327000/9000000 [16:30:13<189:40:17, 12.70 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 328000/9000000 [16:30:15<141:31:46, 17.02 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 328000/9000000 [16:30:33<141:31:46, 17.02 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 329000/9000000 [16:34:18<275:06:17, 8.76 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 330000/9000000 [16:36:04<268:55:52, 8.96 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 331000/9000000 [16:43:39<516:55:42, 4.66 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 332000/9000000 [16:45:08<426:01:43, 5.65 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 332000/9000000 [16:45:23<426:01:43, 5.65 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 333000/9000000 [16:45:58<334:18:07, 7.20 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 334000/9000000 [16:46:04<238:30:26, 10.09 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 335000/9000000 [16:46:11<171:53:55, 14.00 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 335000/9000000 [16:46:23<171:53:55, 14.00 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_2a230aa5-f614-486b-95ba-80471015c4de.py:1: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 336000/9000000 [16:48:55<238:26:26, 10.09 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 337000/9000000 [16:51:08<263:22:27, 9.14 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 338000/9000000 [16:51:52<215:36:44, 11.16 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 338000/9000000 [16:52:03<215:36:44, 11.16 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 339000/9000000 [16:53:29<221:31:30, 10.86 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 339000/9000000 [16:53:43<221:31:30, 10.86 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 340000/9000000 [16:54:03<179:04:42, 13.43 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 340000/9000000 [16:54:13<179:04:42, 13.43 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 341000/9000000 [16:55:03<168:35:42, 14.27 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_0219f283-f2f0-4b51-8265-1a7f32b6a1b7.py:12: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_0219f283-f2f0-4b51-8265-1a7f32b6a1b7.py:13: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_0219f283-f2f0-4b51-8265-1a7f32b6a1b7.py:14: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 341000/9000000 [16:55:13<168:35:42, 14.27 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 342000/9000000 [16:56:21<174:11:14, 13.81 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 342000/9000000 [16:56:33<174:11:14, 13.81 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 343000/9000000 [16:56:45<139:15:21, 17.27 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 343000/9000000 [16:57:03<139:15:21, 17.27 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 344000/9000000 [17:00:45<271:10:00, 8.87 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 345000/9000000 [17:04:59<373:02:29, 6.44 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 346000/9000000 [17:06:06<308:57:39, 7.78 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 346000/9000000 [17:06:23<308:57:39, 7.78 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 347000/9000000 [17:10:54<424:06:19, 5.67 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 348000/9000000 [17:15:45<506:40:53, 4.74 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 349000/9000000 [17:22:17<637:08:21, 3.77 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 350000/9000000 [17:50:58<1686:21:06, 1.42 examples/s]warning: Invalid `# ruff: noqa` directive at /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_f241af0c-3d6f-4208-9414-9b02ada80992.py:27: expected `:` followed by a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_2acbd23e-c882-4afc-ad53-74f285bbfaf5.py:11: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 351000/9000000 [19:10:45<4630:58:01, 1.93s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 352000/9000000 [19:19:14<3607:48:27, 1.50s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 353000/9000000 [19:40:41<3452:13:20, 1.44s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 354000/9000000 [19:43:12<2525:24:49, 1.05s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 355000/9000000 [19:47:17<1944:24:50, 1.24 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 356000/9000000 [19:48:49<1426:42:31, 1.68 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 356000/9000000 [19:49:03<1426:42:31, 1.68 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 357000/9000000 [19:53:44<1211:13:42, 1.98 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 358000/9000000 [19:55:53<940:40:50, 2.55 examples/s] python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|3 | 359000/9000000 [19:58:54<788:25:33, 3.04 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 360000/9000000 [20:02:25<703:54:11, 3.41 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 361000/9000000 [20:05:52<641:42:27, 3.74 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 362000/9000000 [20:07:28<518:18:19, 4.63 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 362000/9000000 [20:07:43<518:18:19, 4.63 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 363000/9000000 [20:07:55<381:59:00, 6.28 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 363000/9000000 [20:08:13<381:59:00, 6.28 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 364000/9000000 [20:13:48<522:01:43, 4.60 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 365000/9000000 [20:22:36<744:45:58, 3.22 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 366000/9000000 [20:24:05<585:25:57, 4.10 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 366000/9000000 [20:24:24<585:25:57, 4.10 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 367000/9000000 [20:31:36<734:01:18, 3.27 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 368000/9000000 [20:32:29<552:04:16, 4.34 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 368000/9000000 [20:32:44<552:04:16, 4.34 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 369000/9000000 [20:34:26<470:55:45, 5.09 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 370000/9000000 [20:35:50<389:27:00, 6.16 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 370000/9000000 [20:36:04<389:27:00, 6.16 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 371000/9000000 [20:37:59<365:29:09, 6.56 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 372000/9000000 [20:38:19<270:14:03, 8.87 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 372000/9000000 [20:38:34<270:14:03, 8.87 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 373000/9000000 [20:39:55<258:26:39, 9.27 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 373000/9000000 [20:40:14<258:26:39, 9.27 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 374000/9000000 [20:42:55<309:55:09, 7.73 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 375000/9000000 [20:48:51<473:11:41, 5.06 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 376000/9000000 [20:49:10<344:35:01, 6.95 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 376000/9000000 [20:49:24<344:35:01, 6.95 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 377000/9000000 [20:49:37<260:18:23, 9.20 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 377000/9000000 [20:49:54<260:18:23, 9.20 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 378000/9000000 [20:51:26<260:37:24, 9.19 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 379000/9000000 [20:52:15<217:31:25, 11.01 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 379000/9000000 [20:52:34<217:31:25, 11.01 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 380000/9000000 [20:56:22<330:08:44, 7.25 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 381000/9000000 [20:56:36<241:04:26, 9.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 381000/9000000 [20:56:54<241:04:26, 9.93 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 382000/9000000 [20:57:38<213:23:00, 11.22 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 382000/9000000 [20:57:54<213:23:00, 11.22 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 383000/9000000 [20:58:55<204:28:38, 11.71 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 383000/9000000 [20:59:14<204:28:38, 11.71 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 384000/9000000 [20:59:36<172:40:20, 13.86 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 384000/9000000 [20:59:54<172:40:20, 13.86 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 385000/9000000 [21:03:20<281:46:38, 8.49 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 386000/9000000 [21:03:53<220:53:57, 10.83 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 386000/9000000 [21:04:04<220:53:57, 10.83 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 387000/9000000 [21:04:25<177:23:46, 13.49 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 387000/9000000 [21:04:44<177:23:46, 13.49 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 388000/9000000 [21:05:27<168:16:35, 14.22 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 388000/9000000 [21:05:44<168:16:35, 14.22 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 389000/9000000 [21:06:06<145:52:03, 16.40 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 389000/9000000 [21:06:24<145:52:03, 16.40 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 390000/9000000 [21:06:55<137:45:54, 17.36 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 390000/9000000 [21:07:14<137:45:54, 17.36 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 391000/9000000 [21:10:33<252:14:35, 9.48 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 392000/9000000 [21:12:43<269:43:40, 8.86 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 393000/9000000 [21:13:41<230:38:26, 10.37 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 393000/9000000 [21:13:54<230:38:26, 10.37 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_7144b136-3cce-46b6-983a-d2a403184bc6.py:6: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_7144b136-3cce-46b6-983a-d2a403184bc6.py:7: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_7144b136-3cce-46b6-983a-d2a403184bc6.py:8: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 394000/9000000 [21:18:44<378:48:10, 6.31 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 395000/9000000 [21:28:23<680:04:21, 3.51 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 396000/9000000 [21:29:55<542:23:45, 4.41 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 397000/9000000 [21:30:00<382:51:49, 6.24 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 397000/9000000 [21:30:14<382:51:49, 6.24 examples/s]warning: Invalid `# noqa` directive on /mnt/tmp/apps/cmss-yangjiandong/data/tmp/output_tmp_2acb0da7-470a-44f8-94a3-501b403ff751.py:174: expected a comma-separated list of codes (e.g., `# noqa: F401, F841`).
python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 398000/9000000 [21:44:41<899:33:38, 2.66 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 399000/9000000 [21:49:23<831:40:12, 2.87 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 400000/9000000 [22:27:44<2231:30:26, 1.07 examples/s]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 401000/9000000 [23:09:13<3345:10:09, 1.40s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 402000/9000000 [23:10:46<2408:13:36, 1.01s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 402000/9000000 [23:11:04<2408:13:36, 1.01s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 403000/9000000 [23:36:01<2770:50:36, 1.16s/ examples]python_code_ruff_check_filter_compute_stats (num_proc=50): 4%|4 | 404000/9000000 [23:50:16<2551:35:04, 1.07s/ examples]