forked from blynn/compiler
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
barely.hs
728 lines (633 loc) · 25.1 KB
/
barely.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
-- Output bare memory dump instead of ION assembly.
infixr 9 .;
infixl 7 *;
infixl 6 + , -;
infixr 5 ++;
infixl 4 <*> , <$> , <* , *>;
infix 4 == , <=;
infixl 3 && , <|>;
infixl 2 ||;
infixr 0 $;
class Eq a where { (==) :: a -> a -> Bool };
instance Eq Int where { (==) = intEq };
undefined = undefined;
($) f x = f x;
id x = x;
flip f x y = f y x;
(&) x f = f x;
data Bool = True | False;
class Ord a where { (<=) :: a -> a -> Bool };
instance Ord Int where { (<=) = intLE };
data Ordering = LT | GT | EQ;
compare x y = case x <= y of
{ True -> case y <= x of
{ True -> EQ
; False -> LT
}
; False -> GT
};
instance Ord a => Ord [a] where {
(<=) xs ys = case xs of
{ [] -> True
; (:) x xt -> case ys of
{ [] -> False
; (:) y yt -> case compare x y of
{ LT -> True
; GT -> False
; EQ -> xt <= yt
}
}
}
};
data Maybe a = Nothing | Just a;
fpair p = \f -> case p of { (,) x y -> f x y };
fst p = case p of { (,) x y -> x };
snd p = case p of { (,) x y -> y };
first f p = fpair p \x y -> (f x, y);
second f p = fpair p \x y -> (x, f y);
ife a b c = case a of { True -> b ; False -> c };
not a = case a of { True -> False; False -> True };
(.) f g x = f (g x);
(||) f g = ife f True g;
(&&) f g = ife f g False;
flst xs n c = case xs of { [] -> n; (:) h t -> c h t };
instance Eq a => Eq [a] where { (==) xs ys = case xs of
{ [] -> case ys of
{ [] -> True
; (:) _ _ -> False
}
; (:) x xt -> case ys of
{ [] -> False
; (:) y yt -> x == y && xt == yt
}
}};
maybe n j m = case m of { Nothing -> n; Just x -> j x };
foldr c n l = flst l n (\h t -> c h(foldr c n t));
foldr1 c l = maybe undefined id (flst l undefined (\h t -> foldr (\x m -> Just (case m of { Nothing -> x ; Just y -> c x y })) Nothing l));
foldl f a bs = foldr (\b g x -> g (f x b)) (\x -> x) bs a;
foldl1 f bs = flst bs undefined (\h t -> foldl f h t);
elem k xs = foldr (\x t -> ife (x == k) True t) False xs;
find f xs = foldr (\x t -> ife (f x) (Just x) t) Nothing xs;
(++) = flip (foldr (:));
concat = foldr (++) [];
wrap c = c:[];
map = flip (foldr . ((:) .)) [];
concatMap = (concat .) . map;
fmaybe m n j = case m of { Nothing -> n; Just x -> j x };
lookup s = foldr (\h t -> fpair h (\k v -> ife (s == k) (Just v) t)) Nothing;
-- Map.
data Map k a = Tip | Bin Int k a (Map k a) (Map k a);
size m = case m of { Tip -> 0 ; Bin sz _ _ _ _ -> sz };
node k x l r = Bin (succ $ size l + size r) k x l r;
singleton k x = Bin 1 k x Tip Tip;
singleL k x l r = case r of
{ Tip -> undefined
; Bin _ rk rkx rl rr -> node rk rkx (node k x l rl) rr
};
singleR k x l r = case l of
{ Tip -> undefined
; Bin _ lk lkx ll lr -> node lk lkx ll (node k x lr r)
};
doubleL k x l r = case r of
{ Tip -> undefined
; Bin _ rk rkx rl rr -> case rl of
{ Tip -> undefined
; Bin _ rlk rlkx rll rlr -> node rlk rlkx (node k x l rll) (node rk rkx rlr rr)
}
};
doubleR k x l r = case l of
{ Tip -> undefined
; Bin _ lk lkx ll lr -> case lr of
{ Tip -> undefined
; Bin _ lrk lrkx lrl lrr -> node lrk lrkx (node lk lkx ll lrl) (node k x lrr r)
}
};
balance k x l r = case size l + size r <= 1 of
{ True -> node
; False -> case 5 * size l + 3 <= 2 * size r of
{ True -> case r of
{ Tip -> node
; Bin sz _ _ rl rr -> case 3 * size rr <= 2 * size rl of
{ True -> doubleL
; False -> singleL
}
}
; False -> case 5 * size r + 3 <= 2 * size l of
{ True -> case l of
{ Tip -> node
; Bin sz _ _ ll lr -> case 3 * size ll <= 2 * size lr of
{ True -> doubleR
; False -> singleR
}
}
; False -> node
}
}
} k x l r;
insert kx x t = case t of
{ Tip -> singleton kx x
; Bin sz ky y l r -> case compare kx ky of
{ LT -> balance ky y (insert kx x l) r
; GT -> balance ky y l (insert kx x r)
; EQ -> Bin sz kx x l r
}
};
mlookup kx t = case t of
{ Tip -> Nothing
; Bin _ ky y l r -> case compare kx ky of
{ LT -> mlookup kx l
; GT -> mlookup kx r
; EQ -> Just y
}
};
fromList = let
{ ins t kx = case kx of { (,) k x -> insert k x t }
} in foldl ins Tip;
foldrWithKey f = let
{ go z t = case t of
{ Tip -> z
; Bin _ kx x l r -> go (f kx x (go z r)) l
}
} in go;
toAscList = foldrWithKey (\k x xs -> (k,x):xs) [];
-- Parsing.
data Type = TC String | TV String | TAp Type Type;
data Extra = Basic Int | Const Int | StrCon String | Proof Pred;
data Ast = E Extra | V String | A Ast Ast | L String Ast;
ro = E . Basic . ord;
pure x = \inp -> Just (x, inp);
sat' f = \h t -> ife (f h) (pure h t) Nothing;
sat f inp = flst inp Nothing (sat' f);
bind f m = case m of
{ Nothing -> Nothing
; Just x -> fpair x f
};
ap x y = \inp -> bind (\a t -> bind (\b u -> pure (a b) u) (y t)) (x inp);
(<*>) = ap;
fmap f x = ap (pure f) x;
(<$>) = fmap;
(>>=) x y = \inp -> bind (\a t -> y a t) (x inp);
(<|>) x y = \inp -> case x inp of
{ Nothing -> y inp
; Just x -> Just x
};
liftA2 f x y = ap (fmap f x) y;
(*>) = liftA2 \x y -> y;
(<*) = liftA2 \x y -> x;
many p = liftA2 (:) p (many p) <|> pure [];
some p = liftA2 (:) p (many p);
sepBy1 p sep = liftA2 (:) p (many (sep *> p));
sepBy p sep = sepBy1 p sep <|> pure [];
char c = sat \x -> x == c;
between x y p = x *> (p <* y);
com = char '-' *> between (char '-') (char '\n') (many (sat \c -> not (c == '\n')));
sp = many ((wrap <$> (sat (\c -> (c == ' ') || (c == '\n')))) <|> com);
spc f = f <* sp;
spch = spc . char;
wantWith pred f inp = bind (sat' pred) (f inp);
want f s inp = wantWith (s ==) f inp;
paren = between (spch '(') (spch ')');
small = sat \x -> ((x <= 'z') && ('a' <= x)) || (x == '_');
large = sat \x -> (x <= 'Z') && ('A' <= x);
digit = sat \x -> (x <= '9') && ('0' <= x);
varLex = liftA2 (:) small (many (small <|> large <|> digit <|> char '\''));
conId = spc (liftA2 (:) large (many (small <|> large <|> digit <|> char '\'')));
keyword s = spc (want varLex s);
varId = spc (wantWith (\s -> not $ s == "of" || s == "where") varLex);
opLex = some (sat (\c -> elem c ":!#$%&*+./<=>?@\\^|-~"));
op = spc opLex <|> between (spch '`') (spch '`') varId;
var = varId <|> paren (spc opLex);
listify = foldr (\h t -> A (A (V ":") h) t) (V "[]");
escChar = char '\\' *> ((sat (\c -> elem c "'\"\\")) <|> ((\c -> '\n') <$> char 'n'));
litOne delim = escChar <|> sat \c -> not (c == delim);
litInt = E . Const . foldl (\n d -> 10*n + ord d - ord '0') 0 <$> spc (some digit);
litStr = between (char '"') (spch '"') $ E . StrCon <$> many (litOne '"');
litChar = E . Const . ord <$> between (char '\'') (spch '\'') (litOne '\'');
lit = litStr <|> litChar <|> litInt;
sqLst r = between (spch '[') (spch ']') $ listify <$> sepBy r (spch ',');
alt r = (,) <$> (conId <|> (wrap <$> paren (spch ':' <|> spch ',')) <|> ((:) <$> spch '[' <*> (wrap <$> spch ']'))) <*> (flip (foldr L) <$> many varId <*> (want op "->" *> r));
braceSep f = between (spch '{') (spch '}') (sepBy f (spch ';'));
alts r = braceSep (alt r);
cas' x as = foldl A (V (concatMap (('|':) . fst) as)) (x:map snd as);
cas r = cas' <$> between (keyword "case") (keyword "of") r <*> alts r;
lamCase r = keyword "case" *> (L "of" . cas' (V "of") <$> alts r);
lam r = spch '\\' *> (lamCase r <|> liftA2 (flip (foldr L)) (some varId) (char '-' *> (spch '>' *> r)));
thenComma r = spch ',' *> (((\x y -> A (A (V ",") y) x) <$> r) <|> pure (A (V ",")));
parenExpr r = (&) <$> r <*> (((\v a -> A (V v) a) <$> op) <|> thenComma r <|> pure id);
rightSect r = ((\v a -> L "@" $ A (A (V v) $ V "@") a) <$> (op <|> (wrap <$> spch ','))) <*> r;
section r = paren (parenExpr r <|> rightSect r);
isFree v expr = case expr of
{ E _ -> False
; V s -> s == v
; A x y -> isFree v x || isFree v y
; L w t -> not (v == w) && isFree v t
};
maybeFix s x = ife (isFree s x) (A (ro 'Y') (L s x)) x;
def r = liftA2 (,) var (liftA2 (flip (foldr L)) (many varId) (spch '=' *> r));
addLets ls x = foldr (\p t -> fpair p (\name def -> A (L name t) $ maybeFix name def)) x ls;
letin r = addLets <$> between (keyword "let") (keyword "in") (braceSep (def r)) <*> r;
atom r = letin r <|> sqLst r <|> section r <|> cas r <|> lam r <|> (paren (spch ',') *> pure (V ",")) <|> fmap V (conId <|> var) <|> lit;
aexp r = fmap (foldl1 A) (some (atom r));
fix f = f (fix f);
data Assoc = NAssoc | LAssoc | RAssoc;
eqAssoc x y = case x of
{ NAssoc -> case y of { NAssoc -> True ; LAssoc -> False ; RAssoc -> False }
; LAssoc -> case y of { NAssoc -> False ; LAssoc -> True ; RAssoc -> False }
; RAssoc -> case y of { NAssoc -> False ; LAssoc -> False ; RAssoc -> True }
};
precOf s precTab = fmaybe (lookup s precTab) 9 fst;
assocOf s precTab = fmaybe (lookup s precTab) LAssoc snd;
opWithPrec precTab n = wantWith (\s -> n == precOf s precTab) op;
opFold precTab e xs = case xs of
{ [] -> e
; (:) x xt -> case find (\y -> not (eqAssoc (assocOf (fst x) precTab) (assocOf (fst y) precTab))) xt of
{ Nothing -> case assocOf (fst x) precTab of
{ NAssoc -> case xt of
{ [] -> fpair x (\op y -> A (A (V op) e) y)
; (:) y yt -> undefined
}
; LAssoc -> foldl (\a b -> fpair b (\op y -> A (A (V op) a) y)) e xs
; RAssoc -> (foldr (\a b -> fpair a (\op y -> \e -> A (A (V op) e) (b y))) id xs) e
}
; Just y -> undefined
}
};
expr precTab = fix \r n -> ife (n <= 9) (liftA2 (opFold precTab) (r (succ n)) (many (liftA2 (\a b -> (a,b)) (opWithPrec precTab n) (r (succ n))))) (aexp (r 0));
data Constr = Constr String [Type];
data Pred = Pred String Type;
data Qual = Qual [Pred] Type;
data Top = Adt Type [Constr] | Def (String, Ast) | Class String Type [(String, Type)] | Inst String Qual [(String, Ast)];
arr a b = TAp (TAp (TC "->") a) b;
bType r = foldl1 TAp <$> some r;
_type r = foldr1 arr <$> sepBy (bType r) (spc (want opLex "->"));
typeConst = (\s -> ife (s == "String") (TAp (TC "[]") (TC "Int")) (TC s)) <$> conId;
aType = paren ((&) <$> _type aType <*> ((spch ',' *> ((\a b -> TAp (TAp (TC ",") b) a) <$> _type aType)) <|> pure id)) <|>
typeConst <|> (TV <$> varId) <|>
(spch '[' *> (spch ']' *> pure (TC "[]") <|> TAp (TC "[]") <$> (_type aType <* spch ']')));
simpleType c vs = foldl TAp (TC c) (map TV vs);
adt = Adt <$> between (keyword "data") (spch '=') (simpleType <$> conId <*> many varId) <*> (sepBy (Constr <$> conId <*> many aType) (spch '|'));
prec = (\c -> ord c - ord '0') <$> spc digit;
fixityList a n os = map (\o -> (o, (n, a))) os;
fixityDecl kw a = between (keyword kw) (spch ';') (fixityList a <$> prec <*> sepBy op (spch ','));
fixity = fixityDecl "infix" NAssoc <|> fixityDecl "infixl" LAssoc <|> fixityDecl "infixr" RAssoc;
noQual = Qual [];
genDecl = (,) <$> var <*> (char ':' *> spch ':' *> _type aType);
classDecl = keyword "class" *> (Class <$> conId <*> (TV <$> varId) <*> (keyword "where" *> braceSep genDecl));
inst = _type aType;
instDecl r = keyword "instance" *>
((\ps cl ty defs -> Inst cl (Qual ps ty) defs) <$>
(((wrap .) . Pred <$> conId <*> (inst <* want op "=>")) <|> pure [])
<*> conId <*> inst <*> (keyword "where" *> braceSep (def r)));
tops precTab = sepBy
( adt
<|> Def <$> def (expr precTab 0)
<|> classDecl
<|> instDecl (expr precTab 0)
) (spch ';');
program' = sp *> (((":", (5, RAssoc)):) . concat <$> many fixity) >>= tops;
-- Primitives.
program = (
[ Adt (TAp (TC "[]") (TV "a")) [Constr "[]" [], Constr ":" [TV "a", TAp (TC "[]") (TV "a")]]
, Adt (TAp (TAp (TC ",") (TV "a")) (TV "b")) [Constr "," [TV "a", TV "b"]]] ++) <$> program';
prims = let
{ ii = arr (TC "Int") (TC "Int")
; iii = arr (TC "Int") ii
; bin s = A (A (ro 'B') (ro 'T')) (A (ro 'T') (ro s)) } in map (second (first noQual)) $
[ ("intEq", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin '='))
, ("intLE", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin 'L'))
, ("chr", (ii, ro 'I'))
, ("ord", (ii, ro 'I'))
, ("succ", (ii, A (ro 'T') (A (E $ Const $ 1) (ro '+'))))
, ("putChar", (arr (TC "Int") (TAp (TC "IO") (TV "a")), A (ro 'T') (A (ro 'F') (ro $ chr 1))))
, ("ioBind", (arr (TAp (TC "IO") (TV "a")) (arr (arr (TV "a") (TAp (TC "IO") (TV "b"))) (TAp (TC "IO") (TV "b"))), ro 'C'))
, ("ioPure", (arr (TV "a") (TAp (TC "IO") (TV "a")), A (A (ro 'B') (ro 'C')) (ro 'T')))
] ++ map (\s -> (wrap s, (iii, bin s))) "+-*/%";
ifz n = ife (0 == n);
showInt' n = ifz n id ((showInt' (n/10)) . ((:) (chr (48+(n%10)))));
showInt n s = ifz n ('0':) (showInt' n) s;
-- Conversion to De Bruijn indices.
data LC = Ze | Su LC | Pass Int | La LC | App LC LC;
debruijn m n e = case e of
{ E x -> case x of
{ Basic b -> Pass b
; Const c -> App (Pass $ ord '#') (Pass c)
-- More principled perhaps:
-- ; StrCon s -> debruijn m n $ listify $ map (E . Const . ord) s
; StrCon s -> foldr (\h t -> App (App (Pass $ ord ':') (App (Pass $ ord '#') (Pass $ ord h))) t) (Pass $ ord 'K') s
; Proof _ -> undefined
}
; V v -> maybe (fmaybe (mlookup v m) undefined Pass) id $
foldr (\h found -> ife (h == v) (Just Ze) (maybe Nothing (Just . Su) found)) Nothing n
; A x y -> App (debruijn m n x) (debruijn m n y)
; L s t -> La (debruijn m (s:n) t)
};
-- Kiselyov bracket abstraction.
data IntTree = Lf Int | Nd IntTree IntTree;
data Sem = Defer | Closed IntTree | Need Sem | Weak Sem;
lf = Lf . ord;
ldef = \r y -> case y of
{ Defer -> Need (Closed (Nd (Nd (lf 'S') (lf 'I')) (lf 'I')))
; Closed d -> Need (Closed (Nd (lf 'T') d))
; Need e -> Need (r (Closed (Nd (lf 'S') (lf 'I'))) e)
; Weak e -> Need (r (Closed (lf 'T')) e)
};
lclo = \r d y -> case y of
{ Defer -> Need (Closed d)
; Closed dd -> Closed (Nd d dd)
; Need e -> Need (r (Closed (Nd (lf 'B') d)) e)
; Weak e -> Weak (r (Closed d) e)
};
lnee = \r e y -> case y of
{ Defer -> Need (r (r (Closed (lf 'S')) e) (Closed (lf 'I')))
; Closed d -> Need (r (Closed (Nd (lf 'R') d)) e)
; Need ee -> Need (r (r (Closed (lf 'S')) e) ee)
; Weak ee -> Need (r (r (Closed (lf 'C')) e) ee)
};
lwea = \r e y -> case y of
{ Defer -> Need e
; Closed d -> Weak (r e (Closed d))
; Need ee -> Need (r (r (Closed (lf 'B')) e) ee)
; Weak ee -> Weak (r e ee)
};
babsa x y = case x of
{ Defer -> ldef babsa y
; Closed d -> lclo babsa d y
; Need e -> lnee babsa e y
; Weak e -> lwea babsa e y
};
babs t = case t of
{ Ze -> Defer
; Su x -> Weak (babs x)
; Pass n -> Closed (Lf n)
; La t -> case babs t of
{ Defer -> Closed (lf 'I')
; Closed d -> Closed (Nd (lf 'K') d)
; Need e -> e
; Weak e -> babsa (Closed (lf 'K')) e
}
; App x y -> babsa (babs x) (babs y)
};
nolam m x = case babs $ debruijn m [] x of
{ Defer -> undefined
; Closed d -> d
; Need e -> undefined
; Weak e -> undefined
};
enc mem t = case t of
{ Lf n -> (n, mem)
; Nd x y -> fpair (enc mem x) \p mem' -> fpair (enc mem' y) \q mem'' ->
ife (p == ord 'I') (q, mem'') $
ife (q == ord 'I') (
ife (p == ord 'C') (ord 'T', mem) $
ife (p == ord 'B') (ord 'I', mem) $
fpair mem'' \hp bs -> (hp, (hp + 2, bs . (p:) . (q:)))
) $
fpair mem'' \hp bs -> (hp, (hp + 2, bs . (p:) . (q:)))
};
asm qas = foldl (\tabmem def -> fpair def \s qt -> fpair tabmem \tab mem ->
fpair (enc mem $ nolam tab $ snd qt) \p m' -> (insert s p tab, m'))
(Tip, (128, id)) qas;
-- Type checking.
apply sub t = case t of
{ TC v -> t
; TV v -> fmaybe (lookup v sub) t id
; TAp a b -> TAp (apply sub a) (apply sub b)
};
(@@) s1 s2 = map (second (apply s1)) s2 ++ s1;
occurs s t = case t of
{ TC v -> False
; TV v -> s == v
; TAp a b -> occurs s a || occurs s b
};
varBind s t = case t of
{ TC v -> Just [(s, t)]
; TV v -> ife (v == s) (Just []) (Just [(s, t)])
; TAp a b -> ife (occurs s t) Nothing (Just [(s, t)])
};
charIsInt s = ife (s == "Char") "Int" s;
mgu unify t u = case t of
{ TC a -> case u of
{ TC b -> ife (charIsInt a == charIsInt b) (Just []) Nothing
; TV b -> varBind b t
; TAp a b -> Nothing
}
; TV a -> varBind a u
; TAp a b -> case u of
{ TC b -> Nothing
; TV b -> varBind b t
; TAp c d -> unify b d (mgu unify a c)
}
};
maybeMap f = maybe Nothing (Just . f);
unify a b = maybe Nothing \s -> maybeMap (@@ s) (mgu unify (apply s a) (apply s b));
--instantiate' :: Type -> Int -> [(String, Type)] -> ((Type, Int), [(String, Type)])
instantiate' t n tab = case t of
{ TC s -> ((t, n), tab)
; TV s -> case lookup s tab of
{ Nothing -> let { va = TV (showInt n "") } in ((va, succ n), (s, va):tab)
; Just v -> ((v, n), tab)
}
; TAp x y ->
fpair (instantiate' x n tab) \tn1 tab1 ->
fpair tn1 \t1 n1 -> fpair (instantiate' y n1 tab1) \tn2 tab2 ->
fpair tn2 \t2 n2 -> ((TAp t1 t2, n2), tab2)
};
instantiatePred pred xyz = case pred of { Pred s t -> fpair xyz \xy tab -> fpair xy \out n -> first (first ((:out) . Pred s)) (instantiate' t n tab) };
--instantiate :: Qual -> Int -> (Qual, Int)
instantiate qt n = case qt of { Qual ps t ->
fpair (foldr instantiatePred (([], n), []) ps) \xy tab -> fpair xy \ps1 n1 ->
first (Qual ps1) (fst (instantiate' t n1 tab))
};
--type SymTab = [(String, (Qual, Ast))];
--type Subst = [(String, Type)];
--infer' :: SymTab -> Subst -> Ast -> (Maybe Subst, Int) -> ((Type, Ast), (Maybe Subst, Int))
infer' typed loc ast csn = fpair csn \cs n ->
let
{ va = TV (showInt n "")
; insta ty = fpair (instantiate ty n) \q n1 -> case q of { Qual preds ty -> ((ty, foldl A ast (map (E . Proof) preds)), (cs, n1)) }
}
in case ast of
{ E x -> case x of
{ Basic b -> ife (b == ord 'Y')
(insta $ noQual $ arr (arr (TV "a") (TV "a")) (TV "a"))
undefined
; Const _ -> ((TC "Int", ast), csn)
; StrCon _ -> ((TAp (TC "[]") (TC "Int"), ast), csn)
; Proof _ -> undefined
}
; V s -> fmaybe (lookup s loc)
(fmaybe (lookup s typed) undefined $ insta . fst)
((, csn) . (, ast))
; A x y ->
fpair (infer' typed loc x (cs, succ n)) \tax csn1 -> fpair tax \tx ax ->
fpair (infer' typed loc y csn1) \tay csn2 -> fpair tay \ty ay ->
((va, A ax ay), first (unify tx (arr ty va)) csn2)
; L s x -> first (\ta -> fpair ta \t a -> (arr va t, L s a)) (infer' typed ((s, va):loc) x (cs, succ n))
};
onType f pred = case pred of { Pred s t -> Pred s (f t) };
instance Eq Type where { (==) t u = case t of
{ TC s -> case u of
{ TC t -> t == s
; TV _ -> False
; TAp _ _ -> False
}
; TV s -> case u of
{ TC _ -> False
; TV t -> t == s
; TAp _ _ -> False
}
; TAp a b -> case u of
{ TC _ -> False
; TV _ -> False
; TAp c d -> a == c && b == d
}
}};
instance Eq Pred where { (==) p q =
case p of { Pred s a -> case q of { Pred t b -> s == t && a == b }}};
predApply sub p = onType (apply sub) p;
all f = foldr (&&) True . map f;
filter f = foldr (\x xs ->ife (f x) (x:xs) xs) [];
intersect xs ys = filter (\x -> fmaybe (find (x ==) ys) False (\_ -> True)) xs;
merge s1 s2 = ife (all (\v -> apply s1 (TV v) == apply s2 (TV v))
$ map fst s1 `intersect` map fst s2) (Just $ s1 ++ s2) Nothing;
match h t = case h of
{ TC a -> case t of
{ TC b -> ife (a == b) (Just []) Nothing
; TV b -> Nothing
; TAp a b -> Nothing
}
; TV a -> Just [(a, t)]
; TAp a b -> case t of
{ TC b -> Nothing
; TV b -> Nothing
; TAp c d -> case match a c of
{ Nothing -> Nothing
; Just ac -> case match b d of
{ Nothing -> Nothing
; Just bd -> merge ac bd
}
}
}
};
matchPred h p = case p of { Pred _ t -> match h t };
showType t = case t of
{ TC s -> s
; TV s -> s
; TAp a b -> concat ["(", showType a, " ", showType b, ")"]
};
showPred p = case p of { Pred s t -> s ++ (' ':showType t) ++ " => "};
findInst r qn p insts = case insts of
{ [] ->
fpair qn \q n -> let { v = '*':showInt n "" } in (((p, v):q, succ n), V v)
; (:) i is -> case i of { Qual ps h -> case matchPred h p of
{ Nothing -> findInst r qn p is
; Just u -> foldl (\qnt p -> fpair qnt \qn1 t -> second (A t)
(r (predApply u p) qn1)) (qn, V (case p of { Pred s _ -> showPred $ Pred s h})) ps
}}};
findProof is pred psn = fpair psn \ps n -> case lookup pred ps of
{ Nothing -> case pred of { Pred s t -> case lookup s is of
{ Nothing -> undefined -- No instances!
; Just insts -> findInst (findProof is) psn pred insts
}}
; Just s -> (psn, V s)
};
prove' ienv sub psn a = case a of
{ E x -> case x of
{ Basic _ -> (psn, a)
; Const _ -> (psn, a)
; StrCon _ -> (psn, a)
; Proof raw -> findProof ienv (predApply sub raw) psn
}
; V _ -> (psn, a)
; A x y -> let { p1 = prove' ienv sub psn x } in fpair p1 \psn1 x1 ->
second (A x1) (prove' ienv sub psn1 y)
; L s t -> second (L s) (prove' ienv sub psn t)
};
--prove :: [(String, [Qual])] -> (Type, Ast) -> Subst -> (Qual, Ast)
prove ienv ta sub = fpair ta \t a ->
fpair (prove' ienv sub ([], 0) a) \psn x -> fpair psn \ps _ ->
(Qual (map fst ps) (apply sub t), foldr L x (map snd ps));
data Either a b = Left a | Right b;
dictVars ps n = flst ps ([], n) \p pt -> first ((p, '*':showInt n ""):) (dictVars pt $ succ n);
-- qi = Qual of instance, e.g. Eq t => [t] -> [t] -> Bool
inferMethod ienv typed qi def = fpair def \s expr ->
fpair (infer' typed [] expr (Just [], 0)) \ta msn ->
case lookup s typed of
{ Nothing -> undefined -- No such method.
-- e.g. qac = Eq a => a -> a -> Bool, some AST (product of single method)
; Just qac -> fpair msn \ms n -> case ms of
{ Nothing -> undefined -- Type check fails.
; Just sub -> fpair (instantiate (fst qac) n) \q1 n1 -> case q1 of { Qual psc tc -> case psc of
{ [] -> undefined -- Unreachable.
; (:) headPred shouldBeNull -> case qi of { Qual psi ti ->
case headPred of { Pred _ headT -> case match headT ti of
{ Nothing -> undefined
-- e.g. Eq t => [t] -> [t] -> Bool
-- instantiate and match it against type of ta
; Just subc ->
fpair (instantiate (Qual psi $ apply subc tc) n1) \q2 n2 ->
case q2 of { Qual ps2 t2 -> fpair ta \tx ax ->
case match (apply sub tx) t2 of
{ Nothing -> undefined -- Class/instance type conflict.
; Just subx -> snd $ prove' ienv (subx @@ sub) (dictVars ps2 0) ax
}}}}}}}}};
inferInst ienv typed inst = fpair inst \cl qds -> fpair qds \q ds ->
case q of { Qual ps t -> let { s = showPred $ Pred cl t } in
(s, (,) (noQual $ TC "DICT") $ maybeFix s $ foldr L (L "@" $ foldl A (V "@") (map (inferMethod ienv typed q) ds)) (map snd $ fst $ dictVars ps 0))
};
reverse = foldl (flip (:)) [];
inferDefs ienv defs typed = flst defs (Right $ reverse typed) \edef rest -> case edef of
{ Left def -> fpair def \s expr -> fpair (infer' typed [] (maybeFix s expr) (Just [], 0)) \ta msn ->
fpair msn \ms _ -> case maybeMap (prove ienv ta) ms of
{ Nothing -> Left ("bad type: " ++ s)
; Just qa -> inferDefs ienv rest ((s, qa):typed)
}
; Right inst -> inferDefs ienv rest (inferInst ienv typed inst:typed)
};
conOf con = case con of { Constr s _ -> s };
mkCase t cs = (concatMap (('|':) . conOf) cs,
( noQual $ arr t $ foldr arr (TV "case") $ map (\c -> case c of { Constr _ ts -> foldr arr (TV "case") ts}) cs
, ro 'I'));
mkStrs = snd . foldl (\p u -> fpair p (\s l -> ('@':s, s : l))) ("@", []);
length = foldr (\_ n -> succ n) 0;
scottEncode vs s ts = foldr L (foldl (\a b -> A a (V b)) (V s) ts) (ts ++ vs);
scottConstr t cs c = case c of { Constr s ts -> (s,
( noQual $ foldr arr t ts
, scottEncode (map conOf cs) s $ mkStrs ts)) };
mkAdtDefs t cs = mkCase t cs : map (scottConstr t cs) cs;
-- * instance environment
-- * definitions, including those of instances
-- * Typed ASTs, ready for compilation, including ADTs and methods,
-- e.g. (==), (Eq a => a -> a -> Bool, select-==)
data Neat = Neat [(String, [Qual])] [Either (String, Ast) (String, (Qual, [(String, Ast)]))] [(String, (Qual, Ast))];
fneat neat f = case neat of { Neat a b c -> f a b c };
select f xs acc = flst xs (Nothing, acc) \x xt -> ife (f x) (Just x, xt ++ acc) (select f xt (x:acc));
addInstance s q is = fpair (select (\kv -> s == fst kv) is []) \m xs -> case m of
{ Nothing -> (s, [q]):xs
; Just sqs -> second (q:) sqs:xs
};
mkSel ms s = L "*" $ A (V "*") $ foldr L (V $ '*':s) $ map (('*':) . fst) ms;
untangle = foldr (\top acc -> fneat acc \ienv fs typed -> case top of
{ Adt t cs -> Neat ienv fs (mkAdtDefs t cs ++ typed)
; Def f -> Neat ienv (Left f : fs) typed
; Class classId v ms -> Neat ienv fs (
map (\st -> fpair st \s t -> (s, (Qual [Pred classId v] t, mkSel ms s))) ms
++ typed)
; Inst cl q ds -> Neat (addInstance cl q ienv) (Right (cl, (q, ds)):fs) typed
}) (Neat [] [] prims);
infer prog = fneat (untangle prog) inferDefs;
showQual q = case q of { Qual ps t -> concatMap showPred ps ++ showType t };
dumpTypes s = fmaybe (program s) "parse error" \progRest ->
fpair progRest \prog rest -> case infer prog of
{ Left err -> err
; Right typed -> concatMap (\p -> fpair p \s qa -> s ++ " :: " ++ showQual (fst qa) ++ "\n") typed
};
prepAsm entry tabmem = fpair tabmem \tab mem ->
maybe undefined id (mlookup entry tab) : snd mem [];
last' x xt = flst xt x \y yt -> last' y yt;
last xs = flst xs undefined last';
compile s = fmaybe (program s) "parse error" \progRest ->
fpair progRest \prog rest -> case infer prog of
{ Left err -> err
; Right qas -> foldr (\n s -> showInt n $ ',':s) rest $ prepAsm (fst $ last qas) $ asm qas
}