forked from mandarjoshi90/coref
-
Notifications
You must be signed in to change notification settings - Fork 0
/
experiments.conf
129 lines (118 loc) · 4.05 KB
/
experiments.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Main configuration. Do not edit! Copy to experiments.conf and change that.
best {
# Edit this
data_dir = /sdb/data/new_coref
model_type = independent
# Computation limits.
max_top_antecedents = 50
max_training_sentences = 5
top_span_ratio = 0.4
max_num_speakers = 20
max_segment_len = 256
# Learning
bert_learning_rate = 1e-5
task_learning_rate = 2e-4
num_docs = 2802
# Model hyperparameters.
dropout_rate = 0.3
ffnn_size = 1000
ffnn_depth = 1
num_epochs = 20
feature_size = 20
max_span_width = 30
use_metadata = true
use_features = true
use_segment_distance = true
model_heads = true
coref_depth = 2
coarse_to_fine = true
fine_grained = true
use_prior = true
# Other.
train_path = train.english.jsonlines
eval_path = dev.english.jsonlines
conll_eval_path = dev.english.v4_gold_conll
single_example = true
genres = ["bc", "bn", "mz", "nw", "pt", "tc", "wb"]
eval_frequency = 1000
report_frequency = 100
log_root = ${data_dir}
adam_eps = 1e-6
task_optimizer = adam
}
bert_base = ${best}{
num_docs = 2802
bert_learning_rate = 1e-05
task_learning_rate = 0.0002
max_segment_len = 128
ffnn_size = 3000
train_path = ${data_dir}/train.english.128.jsonlines
eval_path = ${data_dir}/dev.english.128.jsonlines
conll_eval_path = ${data_dir}/dev.english.v4_gold_conll
max_training_sentences = 11
bert_config_file = ${best.log_root}/bert_base/bert_config.json
vocab_file = ${best.log_root}/bert_base/vocab.txt
tf_checkpoint = ${best.log_root}/bert_base/model.max.ckpt
init_checkpoint = ${best.log_root}/bert_base/model.max.ckpt
}
train_bert_base = ${bert_base}{
tf_checkpoint = ${best.log_root}/cased_L-12_H-768_A-12/bert_model.ckpt
init_checkpoint = ${best.log_root}/cased_L-12_H-768_A-12/bert_model.ckpt
}
bert_large = ${best}{
num_docs = 2802
bert_learning_rate = 1e-05
task_learning_rate = 0.0002
max_segment_len = 384
ffnn_size = 3000
train_path = ${data_dir}/train.english.384.jsonlines
eval_path = ${data_dir}/dev.english.384.jsonlines
conll_eval_path = ${data_dir}/dev.english.v4_gold_conll
max_training_sentences = 3
bert_config_file = ${best.log_root}/bert_large/bert_config.json
vocab_file = ${best.log_root}/bert_large/vocab.txt
tf_checkpoint = ${best.log_root}/bert_large/model.max.ckpt
init_checkpoint = ${best.log_root}/bert_large/model.max.ckpt
}
train_bert_large = ${bert_large}{
tf_checkpoint = ${best.log_root}/cased_L-24_H-1024_A-16/bert_model.ckpt
init_checkpoint = ${best.log_root}/cased_L-24_H-1024_A-16/bert_model.ckpt
}
spanbert_base = ${best}{
num_docs = 2802
bert_learning_rate = 2e-05
task_learning_rate = 0.0001
max_segment_len = 384
ffnn_size = 3000
train_path = ${data_dir}/train.english.384.jsonlines
eval_path = ${data_dir}/dev.english.384.jsonlines
conll_eval_path = ${data_dir}/dev.english.v4_gold_conll
max_training_sentences = 3
bert_config_file = ${best.log_root}/spanbert_base/bert_config.json
vocab_file = ${best.log_root}/spanbert_base/vocab.txt
tf_checkpoint = ${best.log_root}/spanbert_base/model.max.ckpt
init_checkpoint = ${best.log_root}/spanbert_base/model.max.ckpt
}
train_spanbert_base = ${spanbert_base}{
tf_checkpoint = ${best.log_root}/cased_L-12_H-768_A-12/bert_model.ckpt
init_checkpoint = ${best.log_root}/spanbert_hf_base/pytorch_model.bin
}
spanbert_large = ${best}{
num_docs = 2802
bert_learning_rate = 1e-05
task_learning_rate = 0.0003
max_segment_len = 512
ffnn_size = 3000
train_path = ${data_dir}/train.english.512.jsonlines
eval_path = ${data_dir}/dev.english.512.jsonlines
conll_eval_path = ${data_dir}/dev.english.v4_gold_conll
max_training_sentences = 3
bert_config_file = ${best.log_root}/spanbert_large/bert_config.json
vocab_file = ${best.log_root}/spanbert_large/vocab.txt
tf_checkpoint = ${best.log_root}/spanbert_large/model.max.ckpt
init_checkpoint = ${best.log_root}/spanbert_large/model.max.ckpt
}
train_spanbert_large = ${spanbert_large}{
tf_checkpoint = ${best.log_root}/cased_L-24_H-1024_A-16/bert_model.ckpt
init_checkpoint = ${best.log_root}/spanbert_hf/pytorch_model.bin
}