-
Notifications
You must be signed in to change notification settings - Fork 13
/
segmentation_dataset.py
141 lines (115 loc) · 4.56 KB
/
segmentation_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import json
from torch.utils import data
from torchvision.datasets import ImageFolder
import torch
import os
from PIL import Image
import numpy as np
import argparse
from tqdm import tqdm
from munkres import Munkres
import multiprocessing
from multiprocessing import Process, Manager
import collections
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import random
import torchvision
import cv2
import random
torch.manual_seed(0)
SegItem = collections.namedtuple('SegItem', ('image_name', 'tag'))
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
TRANSFORM_TRAIN = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
])
TRANSFORM_EVAL = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
])
IMAGE_TRANSFORMS = transforms.Compose([
transforms.ToTensor(),
normalize
])
MERGED_TAGS = {'n04356056', 'n04355933',
'n04493381', 'n02808440',
'n03642806', 'n03832673',
'n04008634', 'n03773504',
'n03887697', 'n15075141'}
TRAIN_PARTITION = "train"
VAL_PARTITION = "val"
LEGAL_PARTITIONS = {TRAIN_PARTITION, VAL_PARTITION}
# TRAIN_CLASSES = 500
class SegmentationDataset(ImageFolder):
def __init__(self, seg_path, imagenet_path, partition=TRAIN_PARTITION, num_samples=2, train_classes=500
, imagenet_classes_path='imagenet_classes.json', seed=None):
assert partition in LEGAL_PARTITIONS
self._partition = partition
self._seg_path = seg_path
self._imagenet_path = imagenet_path
with open(imagenet_classes_path, 'r') as f:
self._imagenet_classes = json.load(f)
self._tag_list = [tag for tag in os.listdir(self._seg_path) if tag not in MERGED_TAGS]
if seed:
print(f'Shuffling training classes with seed {seed}')
random.seed(seed)
random.shuffle(self._tag_list)
if partition == TRAIN_PARTITION:
# Skip merged tags
self._tag_list = self._tag_list[:train_classes]
elif partition == VAL_PARTITION:
# Skip merged tags
self._tag_list = self._tag_list[train_classes:]
for tag in self._tag_list:
assert tag in self._imagenet_classes
self._all_segementations = []
for tag in self._tag_list:
base_dir = os.path.join(self._seg_path, tag)
for i, seg in enumerate(os.listdir(base_dir)):
if i >= num_samples:
break
self._all_segementations.append(SegItem(seg.split('.')[0], tag))
def __getitem__(self, item):
seg_item = self._all_segementations[item]
seg_path = os.path.join(self._seg_path, seg_item.tag, seg_item.image_name + ".png")
image_path = os.path.join(self._imagenet_path, seg_item.tag, seg_item.image_name + ".JPEG")
seg_map = Image.open(seg_path)
image = Image.open(image_path)
image = image.convert('RGB')
seg_map = np.array(seg_map)
seg_map = seg_map[:, :, 1] * 256 + seg_map[:, :, 0]
assert len([cand for cand in np.unique(seg_map) if cand != 0 and cand != 1000]) == 1
# Convert to binary seg maps
seg_map[seg_map == 1000] = 0
seg_map[seg_map != 0] = 1
seg_map = torch.from_numpy(seg_map.astype(np.float32))
# transforms - start
seg_map = seg_map.reshape(1, seg_map.shape[-2], seg_map.shape[-1])
if self._partition == VAL_PARTITION:
image = TRANSFORM_EVAL(image)
seg_map = TRANSFORM_EVAL(seg_map)
elif self._partition == TRAIN_PARTITION:
# Resize
resize = transforms.Resize(size=(256, 256))
image = resize(image)
seg_map = resize(seg_map)
# Random crop
i, j, h, w = transforms.RandomCrop.get_params(
image, output_size=(224, 224))
image = TF.crop(image, i, j, h, w)
seg_map = TF.crop(seg_map, i, j, h, w)
# RandomHorizontalFlip
if random.random() > 0.5:
image = TF.hflip(image)
seg_map = TF.hflip(seg_map)
else:
raise Exception(f"Unsupported partition type {self._partition}")
# normalize original image and turn to tensor
image_ten = IMAGE_TRANSFORMS(image)
# transforms - end
class_name = int(self._imagenet_classes[seg_item.tag])
return seg_map, image_ten, class_name
def __len__(self):
return len(self._all_segementations)