A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
- Trie() Initializes the trie object.
- void insert(String word) Inserts the string word into the trie.
- boolean search(String word) Returns true if the string word is in the trie (i.e., was inserted before), and false otherwise.
- boolean startsWith(String prefix) Returns true if there is a previously inserted string word that has the prefix prefix, and false otherwise.
Example 1:
Input
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
Output
[null, null, true, false, true, null, true]
Explanation
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
Constraints:
-
$1$ <= word.length, prefix.length <=$2000$ - word and prefix consist only of lowercase English letters.
At most
$3 * 10^4$ calls in total will be made to insert, search, and startsWith.
Problem can be found in here!
Solution: Hash Table
class Trie:
def __init__(self):
self.memo = {}
def insert(self, word: str) -> None:
current_memo = self.memo
for char in word:
if char not in current_memo:
current_memo[char] = {}
current_memo = current_memo[char]
current_memo["."] = None
def search(self, word: str) -> bool:
current_memo = self.memo
for char in word:
if char not in current_memo:
return False
current_memo = current_memo[char]
return "." in current_memo
def startsWith(self, prefix: str) -> bool:
current_memo = self.memo
for char in prefix:
if char not in current_memo:
return False
current_memo = current_memo[char]
return True
Time Complexity: