-
Notifications
You must be signed in to change notification settings - Fork 39
/
volume_renderer.py
392 lines (307 loc) · 16.2 KB
/
volume_renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd as autograd
import numpy as np
from functools import partial
from pdb import set_trace as st
# Basic SIREN fully connected layer
class LinearLayer(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, std_init=1, freq_init=False, is_first=False):
super().__init__()
if is_first:
self.weight = nn.Parameter(torch.empty(out_dim, in_dim).uniform_(-1 / in_dim, 1 / in_dim))
elif freq_init:
self.weight = nn.Parameter(torch.empty(out_dim, in_dim).uniform_(-np.sqrt(6 / in_dim) / 25, np.sqrt(6 / in_dim) / 25))
else:
self.weight = nn.Parameter(0.25 * nn.init.kaiming_normal_(torch.randn(out_dim, in_dim), a=0.2, mode='fan_in', nonlinearity='leaky_relu'))
self.bias = nn.Parameter(nn.init.uniform_(torch.empty(out_dim), a=-np.sqrt(1/in_dim), b=np.sqrt(1/in_dim)))
self.bias_init = bias_init
self.std_init = std_init
def forward(self, input):
out = self.std_init * F.linear(input, self.weight, bias=self.bias) + self.bias_init
return out
# Siren layer with frequency modulation and offset
class FiLMSiren(nn.Module):
def __init__(self, in_channel, out_channel, style_dim, is_first=False):
super().__init__()
self.in_channel = in_channel
self.out_channel = out_channel
if is_first:
self.weight = nn.Parameter(torch.empty(out_channel, in_channel).uniform_(-1 / 3, 1 / 3))
else:
self.weight = nn.Parameter(torch.empty(out_channel, in_channel).uniform_(-np.sqrt(6 / in_channel) / 25, np.sqrt(6 / in_channel) / 25))
self.bias = nn.Parameter(nn.Parameter(nn.init.uniform_(torch.empty(out_channel), a=-np.sqrt(1/in_channel), b=np.sqrt(1/in_channel))))
self.activation = torch.sin
self.gamma = LinearLayer(style_dim, out_channel, bias_init=30, std_init=15)
self.beta = LinearLayer(style_dim, out_channel, bias_init=0, std_init=0.25)
def forward_with_gamma_beta(self, input, gamma, beta):
out = F.linear(input, self.weight, bias=self.bias)
out = self.activation(gamma * out + beta)
return out
def forward(self, input, style):
batch, features = style.shape
out = F.linear(input, self.weight, bias=self.bias)
gamma = self.gamma(style).view(batch, 1, -1)
beta = self.beta(style).view(batch, 1, -1)
out = self.activation(gamma * out + beta)
return out
# Siren Generator Model
class SirenGenerator(nn.Module):
def __init__(self, D=8, W=256, style_dim=256, input_ch=3, input_ch_views=3, output_ch=4,
output_features=True):
super(SirenGenerator, self).__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_views = input_ch_views
self.style_dim = style_dim
self.output_features = output_features
self.pts_linears = nn.ModuleList(
[FiLMSiren(3, W, style_dim=style_dim, is_first=True)] + \
[FiLMSiren(W, W, style_dim=style_dim) for i in range(D-1)])
self.views_linears = FiLMSiren(input_ch_views + W, W,
style_dim=style_dim)
self.rgb_linear = LinearLayer(W, 3, freq_init=True)
self.sigma_linear = LinearLayer(W, 1, freq_init=True)
def mapping_network(self, style):
batch, _ = style.shape
gamma_list = [
self.pts_linears[i].gamma(style).view(batch, 1, -1)
for i in range(len(self.pts_linears))
] + [self.views_linears.gamma(style).view(batch, 1, -1),]
beta_list = [
self.pts_linears[i].beta(style).view(batch, 1, -1)
for i in range(len(self.pts_linears))
] + [self.views_linears.beta(style).view(batch, 1, -1),]
return torch.stack(gamma_list, 0), torch.stack(beta_list, 0)
def forward_with_gamma_beta(self, x, gamma_list, beta_list):
input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)
mlp_out = input_pts.contiguous()
for i in range(len(self.pts_linears)):
mlp_out = self.pts_linears[i].forward_with_gamma_beta(mlp_out, gamma_list[i], beta_list[i])
sdf = self.sigma_linear(mlp_out)
mlp_out = torch.cat([mlp_out, input_views], -1)
out_features = self.views_linears.forward_with_gamma_beta(mlp_out, gamma_list[-1], beta_list[-1])
rgb = self.rgb_linear(out_features)
outputs = torch.cat([rgb, sdf], -1)
if self.output_features:
outputs = torch.cat([outputs, out_features], -1)
return outputs
def forward(self, x, styles):
input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)
mlp_out = input_pts.contiguous()
for i in range(len(self.pts_linears)):
mlp_out = self.pts_linears[i](mlp_out, styles)
sdf = self.sigma_linear(mlp_out)
mlp_out = torch.cat([mlp_out, input_views], -1)
out_features = self.views_linears(mlp_out, styles)
rgb = self.rgb_linear(out_features)
outputs = torch.cat([rgb, sdf], -1)
if self.output_features:
outputs = torch.cat([outputs, out_features], -1)
return outputs
# Full volume renderer
class VolumeFeatureRenderer(nn.Module):
def __init__(self, opt, style_dim=256, out_im_res=64, mode='train'):
super().__init__()
self.test = mode != 'train'
self.perturb = opt.perturb
self.offset_sampling = not opt.no_offset_sampling # Stratified sampling used otherwise
self.N_samples = opt.N_samples
self.raw_noise_std = opt.raw_noise_std
self.return_xyz = opt.return_xyz
self.return_sdf = opt.return_sdf
self.static_viewdirs = opt.static_viewdirs
self.z_normalize = not opt.no_z_normalize
self.out_im_res = out_im_res
self.force_background = opt.force_background
self.with_sdf = not opt.no_sdf
if 'no_features_output' in opt.keys():
self.output_features = False
else:
self.output_features = True
if self.with_sdf:
self.sigmoid_beta = nn.Parameter(0.1 * torch.ones(1))
# create meshgrid to generate rays
i, j = torch.meshgrid(torch.linspace(0.5, self.out_im_res - 0.5, self.out_im_res),
torch.linspace(0.5, self.out_im_res - 0.5, self.out_im_res))
self.register_buffer('i', i.t().unsqueeze(0), persistent=False)
self.register_buffer('j', j.t().unsqueeze(0), persistent=False)
# create integration values
if self.offset_sampling:
t_vals = torch.linspace(0., 1.-1/self.N_samples, steps=self.N_samples).view(1,1,1,-1)
else: # Original NeRF Stratified sampling
t_vals = torch.linspace(0., 1., steps=self.N_samples).view(1,1,1,-1)
self.register_buffer('t_vals', t_vals, persistent=False)
self.register_buffer('inf', torch.Tensor([1e10]), persistent=False)
self.register_buffer('zero_idx', torch.LongTensor([0]), persistent=False)
if self.test:
self.perturb = False
self.raw_noise_std = 0.
self.channel_dim = -1
self.samples_dim = 3
self.input_ch = 3
self.input_ch_views = 3
self.feature_out_size = opt.width
# set Siren Generator model
self.network = SirenGenerator(D=opt.depth, W=opt.width, style_dim=style_dim, input_ch=self.input_ch,
output_ch=4, input_ch_views=self.input_ch_views,
output_features=self.output_features)
def get_rays(self, focal, c2w):
dirs = torch.stack([(self.i - self.out_im_res * .5) / focal,
-(self.j - self.out_im_res * .5) / focal,
-torch.ones_like(self.i).expand(focal.shape[0],self.out_im_res, self.out_im_res)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = torch.sum(dirs[..., None, :] * c2w[:,None,None,:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = c2w[:,None,None,:3,-1].expand(rays_d.shape)
if self.static_viewdirs:
viewdirs = dirs
else:
viewdirs = rays_d
return rays_o, rays_d, viewdirs
def get_eikonal_term(self, pts, sdf):
eikonal_term = autograd.grad(outputs=sdf, inputs=pts,
grad_outputs=torch.ones_like(sdf),
create_graph=True)[0]
return eikonal_term
def sdf_activation(self, input):
sigma = torch.sigmoid(input / self.sigmoid_beta) / self.sigmoid_beta
return sigma
def volume_integration(self, raw, z_vals, rays_d, pts, return_eikonal=False):
dists = z_vals[...,1:] - z_vals[...,:-1]
rays_d_norm = torch.norm(rays_d.unsqueeze(self.samples_dim), dim=self.channel_dim)
# dists still has 4 dimensions here instead of 5, hence, in this case samples dim is actually the channel dim
dists = torch.cat([dists, self.inf.expand(rays_d_norm.shape)], self.channel_dim) # [N_rays, N_samples]
dists = dists * rays_d_norm
# If sdf modeling is off, the sdf variable stores the
# pre-integration raw sigma MLP outputs.
if self.output_features:
rgb, sdf, features = torch.split(raw, [3, 1, self.feature_out_size], dim=self.channel_dim)
else:
rgb, sdf = torch.split(raw, [3, 1], dim=self.channel_dim)
noise = 0.
if self.raw_noise_std > 0.:
noise = torch.randn_like(sdf) * self.raw_noise_std
if self.with_sdf:
sigma = self.sdf_activation(-sdf)
if return_eikonal:
eikonal_term = self.get_eikonal_term(pts, sdf)
else:
eikonal_term = None
sigma = 1 - torch.exp(-sigma * dists.unsqueeze(self.channel_dim))
else:
sigma = sdf
eikonal_term = None
sigma = 1 - torch.exp(-F.softplus(sigma + noise) * dists.unsqueeze(self.channel_dim))
visibility = torch.cumprod(torch.cat([torch.ones_like(torch.index_select(sigma, self.samples_dim, self.zero_idx)),
1.-sigma + 1e-10], self.samples_dim), self.samples_dim)
visibility = visibility[...,:-1,:]
weights = sigma * visibility
if self.return_sdf:
sdf_out = sdf
else:
sdf_out = None
if self.force_background:
weights[...,-1,:] = 1 - weights[...,:-1,:].sum(self.samples_dim)
rgb_map = -1 + 2 * torch.sum(weights * torch.sigmoid(rgb), self.samples_dim) # switch to [-1,1] value range
if self.output_features:
feature_map = torch.sum(weights * features, self.samples_dim)
else:
feature_map = None
# Return surface point cloud in world coordinates.
# This is used to generate the depth maps visualizations.
# We use world coordinates to avoid transformation errors between
# surface renderings from different viewpoints.
if self.return_xyz:
xyz = torch.sum(weights * pts, self.samples_dim)
mask = weights[...,-1,:] # background probability map
else:
xyz = None
mask = None
return rgb_map, feature_map, sdf_out, mask, xyz, eikonal_term
def run_network(self, inputs, viewdirs, styles=None):
input_dirs = viewdirs.unsqueeze(self.samples_dim).expand(inputs.shape)
net_inputs = torch.cat([inputs, input_dirs], self.channel_dim)
outputs = self.network(net_inputs, styles=styles)
return outputs
def render_rays(self, ray_batch, styles=None, return_eikonal=False):
batch, h, w, _ = ray_batch.shape
split_pattern = [3, 3, 2]
if ray_batch.shape[-1] > 8:
split_pattern += [3]
rays_o, rays_d, bounds, viewdirs = torch.split(ray_batch, split_pattern, dim=self.channel_dim)
else:
rays_o, rays_d, bounds = torch.split(ray_batch, split_pattern, dim=self.channel_dim)
viewdirs = None
near, far = torch.split(bounds, [1, 1], dim=self.channel_dim)
z_vals = near * (1.-self.t_vals) + far * (self.t_vals)
if self.perturb > 0.:
if self.offset_sampling:
# random offset samples
upper = torch.cat([z_vals[...,1:], far], -1)
lower = z_vals.detach()
t_rand = torch.rand(batch, h, w).unsqueeze(self.channel_dim).to(z_vals.device)
else:
# get intervals between samples
mids = .5 * (z_vals[...,1:] + z_vals[...,:-1])
upper = torch.cat([mids, z_vals[...,-1:]], -1)
lower = torch.cat([z_vals[...,:1], mids], -1)
# stratified samples in those intervals
t_rand = torch.rand(z_vals.shape).to(z_vals.device)
z_vals = lower + (upper - lower) * t_rand
pts = rays_o.unsqueeze(self.samples_dim) + rays_d.unsqueeze(self.samples_dim) * z_vals.unsqueeze(self.channel_dim)
if return_eikonal:
pts.requires_grad = True
if self.z_normalize:
normalized_pts = pts * 2 / ((far - near).unsqueeze(self.samples_dim))
else:
normalized_pts = pts
raw = self.run_network(normalized_pts, viewdirs, styles=styles)
rgb_map, features, sdf, mask, xyz, eikonal_term = self.volume_integration(raw, z_vals, rays_d, pts, return_eikonal=return_eikonal)
return rgb_map, features, sdf, mask, xyz, eikonal_term
def render(self, focal, c2w, near, far, styles, c2w_staticcam=None, return_eikonal=False):
rays_o, rays_d, viewdirs = self.get_rays(focal, c2w)
viewdirs = viewdirs / torch.norm(viewdirs, dim=-1, keepdim=True)
# Create ray batch
near = near.unsqueeze(-1) * torch.ones_like(rays_d[...,:1])
far = far.unsqueeze(-1) * torch.ones_like(rays_d[...,:1])
rays = torch.cat([rays_o, rays_d, near, far], -1)
rays = torch.cat([rays, viewdirs], -1)
rays = rays.float()
rgb, features, sdf, mask, xyz, eikonal_term = self.render_rays(rays, styles=styles, return_eikonal=return_eikonal)
return rgb, features, sdf, mask, xyz, eikonal_term
def mlp_init_pass(self, cam_poses, focal, near, far, styles=None):
rays_o, rays_d, viewdirs = self.get_rays(focal, cam_poses)
viewdirs = viewdirs / torch.norm(viewdirs, dim=-1, keepdim=True)
near = near.unsqueeze(-1) * torch.ones_like(rays_d[...,:1])
far = far.unsqueeze(-1) * torch.ones_like(rays_d[...,:1])
z_vals = near * (1.-self.t_vals) + far * (self.t_vals)
# get intervals between samples
mids = .5 * (z_vals[...,1:] + z_vals[...,:-1])
upper = torch.cat([mids, z_vals[...,-1:]], -1)
lower = torch.cat([z_vals[...,:1], mids], -1)
# stratified samples in those intervals
t_rand = torch.rand(z_vals.shape).to(z_vals.device)
z_vals = lower + (upper - lower) * t_rand
pts = rays_o.unsqueeze(self.samples_dim) + rays_d.unsqueeze(self.samples_dim) * z_vals.unsqueeze(self.channel_dim)
if self.z_normalize:
normalized_pts = pts * 2 / ((far - near).unsqueeze(self.samples_dim))
else:
normalized_pts = pts
raw = self.run_network(normalized_pts, viewdirs, styles=styles)
_, sdf = torch.split(raw, [3, 1], dim=self.channel_dim)
sdf = sdf.squeeze(self.channel_dim)
target_values = pts.detach().norm(dim=-1) - ((far - near) / 4)
return sdf, target_values
def forward(self, cam_poses, focal, near, far, styles=None, return_eikonal=False):
rgb, features, sdf, mask, xyz, eikonal_term = self.render(focal, c2w=cam_poses, near=near, far=far, styles=styles, return_eikonal=return_eikonal)
rgb = rgb.permute(0,3,1,2).contiguous()
if self.output_features:
features = features.permute(0,3,1,2).contiguous()
if xyz != None:
xyz = xyz.permute(0,3,1,2).contiguous()
mask = mask.permute(0,3,1,2).contiguous()
return rgb, features, sdf, mask, xyz, eikonal_term