-
Notifications
You must be signed in to change notification settings - Fork 4
/
eclipse-aligner.py
567 lines (540 loc) · 27.1 KB
/
eclipse-aligner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import argparse
import errno
import json
import os
import shutil
import psutil
import sys
import time
from multiprocessing import Manager, Process, Queue, Value, freeze_support
from pathlib import Path
import cv2
import click
import numpy as np
from scipy import signal, spatial
from tqdm import tqdm
def find_sun_and_moon_worker(input_queue, output_queue, params):
try:
for jpg_path in iter(input_queue.get, 'STOP'):
# put the sun in the center of an image with enough border for moon detection by conv2d
# we'll need a square image with sides of
# (sun_radius + moon_radius * 2) * 2 = (1210 + 1191 * 2) * 2 = 7184
# read jpg
img = cv2.imread(str(jpg_path), cv2.IMREAD_COLOR)
# (3456, 4608, 3)
# remove images with white values on border (CLIPPED SUN)
if params['filter']:
if img[:, (0, -1), 1].max() > params['clipped_cutoff'] or img[(0, -1), :,
1].max() > params['clipped_cutoff']:
# print(f'Moving {jpg_path.name} with CLIPPED SUN ({clipped_count})')
shutil.move(jpg_path, jpg_clipped_path / jpg_path.name)
continue
# remove images with all black values (NO SUN)
if img.max() < params['empty_cutoff']:
# print(f'Moving {jpg_path.name} with NO SUN ({empty_count})')
shutil.move(jpg_path, jpg_clipped_path / jpg_path.name)
continue
####################
# find center of sun
####################
# grayscale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# otsu
# _, img_binary = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
_, img_binary = cv2.threshold(img_gray, params['sun_threshold'], 255, cv2.THRESH_BINARY)
# save sun_binary
cv2.imwrite(str(params['jpg_sun_binary_path'] / jpg_path.name), img_binary)
# fft convolve
sun_signal = signal.fftconvolve(img_binary.astype('float') / 255, params['sun_mask'], mode='same')
# find coordinates of the largest value in sun_signal
y, x = np.unravel_index(np.argmax(sun_signal, axis=None), sun_signal.shape)
sun_x, sun_y = int(x), int(y)
# draw sun circle on circled
circled = img.copy()
a = cv2.circle(circled, (sun_x, sun_y), params['sun_mask_r'], (0, 0, 255), 4)
a = cv2.rectangle(circled, (sun_x - 5, sun_y - 5), (sun_x + 5, sun_y + 5), (0, 128, 255), -1)
#####################
# find center of moon
#####################
if params['fix_angle'] != -1:
img_h, img_w = img.shape[:2]
# pad image to canvas_size
pad_x, pad_y = (params['canvas_size'] - img_w) // 2, (params['canvas_size'] - img_h) // 2
padded = np.pad(img, ((pad_y, pad_y), (pad_x, pad_x), (0, 0)))
# calculate the distance between the center of the sun and the center of the image
center_x, center_y = img_w // 2, img_h // 2
canvas = np.zeros((params['canvas_size'], params['canvas_size'], img.shape[2]), dtype=np.uint8)
dx, dy = center_x - sun_x, center_y - sun_y
# draw sun at the center of the canvas
left, right = (0, dx) if dx > 0 else (-dx, 0)
up, down = (0, dy) if dy > 0 else (-dy, 0)
pad_h, pad_w = padded.shape[:2]
canvas[down:(pad_h - up), right:(pad_w - left), :] = padded[up:(pad_h - down), left:(pad_w - right), :]
# locate moon
# grayscale
canvas_gray = cv2.cvtColor(canvas, cv2.COLOR_BGR2GRAY)
# otsu
th, _ = cv2.threshold(canvas_gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
_, canvas_binary = cv2.threshold(canvas_gray, th + params['moon_threshold_mod'], 255, cv2.THRESH_BINARY)
# save moon_binary
_, moon_binary = cv2.threshold(img_gray, th + params['moon_threshold_mod'], 255, cv2.THRESH_BINARY)
cv2.imwrite(str(params['jpg_moon_binary_path'] / jpg_path.name), moon_binary)
# fft convolve
moon_signal = signal.fftconvolve(canvas_binary.astype('float') / 255, params['moon_mask'], mode='valid')
# find coordinates of the smallest values in moon_signal that are also inside the moon_signal_mask
rows, cols = np.where((moon_signal < 1) * (params['moon_signal_mask'] > 0))
# find the coordinate closest to the center of the sun (closest to the center of the moon_signal image)
moon_signal_center = moon_signal.shape[0] // 2
moon_x, moon_y, min_dist = 0, 0, 99999
for i in range(rows.shape[0]):
dist = spatial.distance.euclidean([cols[i], rows[i]], [moon_signal_center, moon_signal_center])
if dist < min_dist:
moon_x, moon_y, min_dist = int(cols[i]), int(rows[i]), float(dist)
# calculate moon coordinates in the original image
# moon_x is relative to moon_signal (4802, 4802)
original_moon_x = moon_x - (params['moon_signal_mask_size'] - img_w) // 2 - dx
original_moon_y = moon_y - (params['moon_signal_mask_size'] - img_h) // 2 - dy
# DSCN0437.jpg: 3010, 4375, 1288, -77 - 4624, 2914, 1864, 154
# tqdm.write(
# f'{jpg_path.name}: {original_moon_x}, {moon_x}, {pad_x}, {dx} - {original_moon_y}, {moon_y}, {pad_y}, {dy}'
# )
# draw moon circle on circled
a = cv2.circle(circled, (original_moon_x, original_moon_y), params['moon_mask_r'], (0, 255, 0), 4)
a = cv2.rectangle(
circled, (original_moon_x - 5, original_moon_y - 5), (original_moon_x + 5, original_moon_y + 5),
(0, 128, 255), -1
)
# put in queue
output_queue.put((jpg_path, sun_x, sun_y, moon_x, moon_y, min_dist, moon_signal_center))
else:
# put in queue
output_queue.put((jpg_path, sun_x, sun_y))
# save circled
cv2.imwrite(str(params['jpg_circled_path'] / jpg_path.name), circled)
except Exception as e:
if params['fix_angle'] != -1:
output_queue.put((jpg_path, -1, e, -1, -1, -1, -1))
else:
output_queue.put((jpg_path, -1, e))
angle = 0
if __name__ == '__main__':
freeze_support()
def output_image(jpg_path, circles_data):
global angle
# circles_data = {
# 'moon': (moon_x, moon_y, moon_mask_r, min_dist, moon_signal_center),
# 'sun': (sun_x, sun_y, sun_mask_r)
# }
sun_x, sun_y, sun_mask_r = circles_data['sun']
# read jpg
img = cv2.imread(str(jpg_path), cv2.IMREAD_COLOR)
# (3456, 4608, 3)
img_h, img_w = img.shape[:2]
# pad image to canvas_size
pad_x, pad_y = (canvas_size - img_w) // 2, (canvas_size - img_h) // 2
padded = np.pad(img, ((pad_y, pad_y), (pad_x, pad_x), (0, 0)))
# calculate the distance between the center of the sun and the center of the image
center_x, center_y = img_w // 2, img_h // 2
canvas = np.zeros((canvas_size, canvas_size, img.shape[2]), dtype=np.uint8)
canvas_h, canvas_w = canvas.shape[:2]
dx, dy = center_x - sun_x, center_y - sun_y
# draw sun at the center of the canvas
left, right = (0, dx) if dx > 0 else (-dx, 0)
up, down = (0, dy) if dy > 0 else (-dy, 0)
pad_h, pad_w = padded.shape[:2]
canvas[down:(pad_h - up), right:(pad_w - left), :] = padded[up:(pad_h - down), left:(pad_w - right), :]
if args.fix_angle != -1:
# update angle if min_dist > 30 and min_dist < (sun_mask_r + moon_mask_r - 100)
moon_x, moon_y, moon_mask_r, min_dist, moon_signal_center = circles_data['moon']
if min_dist > args.max_phase_rotation_group_threshold and min_dist < (
sun_mask_r + moon_mask_r - args.min_phase_rotation_group_threshold
):
dx, dy = moon_x - moon_signal_center, moon_y - moon_signal_center
moon_degree = np.arctan2(dx, dy) * 180 / np.pi
if moon_degree > 0:
angle = args.fix_angle - moon_degree
else:
angle = args.fix_angle - 180 - moon_degree
# tqdm.write(f'{jpg_path.name} angle: {angle}')
# rotate canvas
center = (canvas_w // 2, canvas_h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
canvas = cv2.warpAffine(canvas, M, (canvas_w, canvas_h))
# crop to original size
crop_x, crop_y = (canvas_w - crop_w) // 2, (canvas_h - crop_h) // 2
cropped = canvas[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w]
# save cropped
cv2.imwrite(str(jpg_output_path / jpg_path.name), cropped)
def verify_input_path(p):
# get absolute path to dataset directory
path = Path(os.path.abspath(os.path.expanduser(p)))
# doesn't exist
if not path.exists():
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), path)
# is dir
if path.is_dir():
raise IsADirectoryError(errno.EISDIR, os.strerror(errno.EISDIR), path)
return path
def verify_indir_path(p):
# get absolute path
path = Path(os.path.abspath(os.path.expanduser(p)))
# doesn't exist
if not path.exists():
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), path)
# existing file
if not path.is_dir():
raise NotADirectoryError(errno.ENOTDIR, os.strerror(errno.ENOTDIR), path)
else: # got existing directory
assert len([x for x in path.iterdir()]) != 0, 'Directory is empty'
return path
parser = argparse.ArgumentParser(
description='This specialized program is used to align and stabilize solar eclipse time-lapse photos',
prog='eclipse-aligner'
)
parser.add_argument('-v', '--version', action='version', version='%(prog)s v1.0')
parser.add_argument(
'--input',
type=str,
required=True,
help='Path to the input directory, will only read JPGs, develop you DNGs into JPGs first.'
)
parser.add_argument(
'--sun',
type=str,
default='',
help=
'Path to an image with an un-eclipsed sun, used to auto detect the radius of the sun in pixels, if you do not have an image with an un-eclipsed sun, you can try using an image with the least partially eclipsed sun.'
)
parser.add_argument(
'--sun_radius',
type=int,
default=-1,
help='Radius of the sun in pixels, if not given, auto detect from full sun image. (default: %(default)s)'
)
parser.add_argument(
'--sun_threshold',
type=int,
default=25,
help=
'Brightness threshold used to convert the image to black and white, choose a value that gives clean edges for best results. (default: %(default)s)'
)
parser.add_argument(
'--fix_angle',
type=int,
default=-1,
help=
'Enables moon angle stabilization if given a non-negative value in degrees, do not enable if processing partial solar eclipse images. (default: %(default)s)'
)
parser.add_argument(
'--moon_radius_mod',
type=int,
default=-24,
help=
'(MOON_RADIUS - SUN_RADIUS) in pixels, use a negative value if the moon is smaller than the sun (as is the case of annular solar eclipse). (default: %(default)s)'
)
parser.add_argument(
'--moon_threshold_mod',
type=int,
default=-1,
help=
'Use a negative value to use a smaller threshold, or a positive value to use a larger threshold, choose a value that gives clean moon edges. TECHNICAL INFO: this value is added the dynamic Otsu threshold. (default: %(default)s)'
)
parser.add_argument(
'--max_phase_rotation_group_threshold',
type=int,
default=30,
metavar='THRESHOLD',
help=
'To solve the problem that the angle of moon is ambiguous at totality or annularity, we group the images where the distance of the sun and moon is smaller than the given value in pixels, and assume that the require rotation if the same for the whole group, and the required rotation of the image with a distance just greater than the given value is used for the whole group. (default: %(default)s)'
)
parser.add_argument(
'--min_phase_rotation_group_threshold',
type=int,
default=100,
metavar='THRESHOLD',
help=
'Moon detection for images near the start or end of the eclipse may be hard to get right, we group the images where the shadowed width is less than the given value in pixels, and assume that the require rotation if the same for the images in the same group. (default: %(default)s)'
)
parser.add_argument('--filter', action='store_true', help='Enable the clipped sun filter. (default: %(default)s)')
parser.add_argument(
'--clipped_cutoff',
type=int,
default=40,
help=
'The clipped sun filter will filter out images if any edge pixel\'s brightness exceeds this value. (default: %(default)s)'
)
parser.add_argument(
'--empty_cutoff',
type=int,
default=80,
help=
'The clipped sun filter will filter out images if the brightest pixel in the image is lower than this value, in other words, there is nothing in the image. (default: %(default)s)'
)
parser.add_argument(
'--workers',
type=int,
default=-1,
help=
'Number of processing workers, each workers requires 3.5GB of RAM for 16M pixel images, the larger the image the more ram is required. (default: %(default)s)'
)
parser.add_argument(
'--output_suffix',
type=str,
default='-output',
help=
'The stabilized results will be save to a directory with the same name as the input directory appended with the given suffix. (default: %(default)s)'
)
parser.add_argument(
'--clipped_suffix',
type=str,
default='-clipped',
help=
'The clipped sun filer will move images to a directory with the same name as the input directory appended with the given suffix. (default: %(default)s)'
)
parser.add_argument(
'--circled_suffix',
type=str,
default='-circled',
help=
'Images with the sun circled in red for validation will be saved to a directory with the same name as the input directory appended with the given suffix. (default: %(default)s)'
)
parser.add_argument(
'--sun_binary_suffix',
type=str,
default='-sun-binary',
help=
'Black and white images using the sun threshold will be saved to a directory with the same name as the input directory appended with the given suffix. Used for finetuning the sun threshold value. (default: %(default)s)'
)
parser.add_argument(
'--moon_binary_suffix',
type=str,
default='-moon-binary',
help=
'Black and white images using the moon threshold mod will be saved to a directory with the same name as the input directory appended with the given suffix. Used for finetuning the moon threshold mod value. (default: %(default)s)'
)
parser.add_argument(
'--circles',
type=str,
default='',
help=
'If not given, by default, the program will save the detected sun and moon location data in JSON format to a file named circles_data.json located in the same directory as the input directory, and will overwrite the file if exists. If the detected location are good, you can choose to move the file to another location for reuse if you decide to re-develop the DNGs with better settings. If given the path to the existing good circles_data.json, the program will read the sun and moon location data from the JSON file and perform the centering and angle stabilization using the data in the JSON file. (default: circles_data.json)'
)
args, unparsed = parser.parse_known_args()
start_time = time.time()
# verify input directory
JPG_GLOB = '*.[jJ][pP][gG]'
try:
jpg_dir_path = verify_indir_path(args.input)
except FileNotFoundError:
click.secho('ERROR: --input does not exist, please provide directory containing JPG files.', fg='red')
sys.exit(1)
except NotADirectoryError:
click.secho('ERROR: --input is a file, please provide directory containing JPG files.', fg='red')
sys.exit(1)
input_paths = sorted(jpg_dir_path.glob(JPG_GLOB))
num_images = len(input_paths)
if num_images == 0:
click.secho(
'ERROR: --input does not have any JPG files, please provide directory containing JPG files.', fg='red'
)
sys.exit(1)
click.secho(f'INFO: {num_images} images found in {jpg_dir_path}')
# get image size from first image
img = cv2.imread(str(input_paths[0]), cv2.IMREAD_COLOR)
if img is None:
click.secho(f'ERROR: Unable to read first image in --input: {str(input_paths[0])}', fg='red')
sys.exit(1)
img_h, img_w = img.shape[:2]
img_size = img_h * img_w
crop_w, crop_h = img_w, img_h
click.secho(f'INFO: Detected image size (height, width): {img.shape[:2]}')
# set sun radius
if args.sun_radius != -1:
# use given sun radius
sun_mask_r = args.sun_radius
click.secho(f'INFO: Using given SUN RADIUS: {sun_mask_r}')
elif args.sun != '':
# detect sun radius
try:
sun_path = verify_input_path(args.sun)
except FileNotFoundError:
click.secho('ERROR: --sun does not exist, please provide a JPG file.', fg='red')
sys.exit(1)
except IsADirectoryError:
click.secho('ERROR: --sun is a directory, please provide a JPG file.', fg='red')
sys.exit(1)
sun = cv2.imread(str(sun_path), cv2.IMREAD_COLOR)
sun_gray = cv2.cvtColor(sun, cv2.COLOR_BGR2GRAY)
_, sun_binary = cv2.threshold(sun_gray, args.sun_threshold, 255, cv2.THRESH_BINARY)
_, _, stats, _ = cv2.connectedComponentsWithStats(sun_binary)
sun_mask_r = int(max(stats[1][2:4]) // 2)
click.secho(f'INFO: Detected SUN RADIUS: {sun_mask_r}')
else:
# print error message
click.secho(f'ERROR: Please provide either --sun or --sun_radius', fg='red')
sys.exit(1)
# moon_mask_r = 1187
moon_mask_r = sun_mask_r + args.moon_radius_mod
if args.fix_angle != -1:
click.secho(f'INFO: Using MOON RADIUS: {moon_mask_r} (sun_radius + moon_radius_mod)')
# 7184
canvas_size = (sun_mask_r + moon_mask_r * 2) * 2
# 4802
moon_signal_mask_size = canvas_size - moon_mask_r * 2
moon_signal_mask_r = moon_signal_mask_size // 2
# create masks
sun_mask = np.zeros((sun_mask_r * 2 + 1, sun_mask_r * 2 + 1), np.float32)
_ = cv2.circle(sun_mask, (sun_mask_r, sun_mask_r), sun_mask_r, 1.0, -1)
_ = cv2.circle(sun_mask, (sun_mask_r, sun_mask_r), sun_mask_r - 50, 0.0, -1)
moon_mask = np.zeros((moon_mask_r * 2 + 1, moon_mask_r * 2 + 1), np.float32)
_ = cv2.circle(moon_mask, (moon_mask_r, moon_mask_r), moon_mask_r, 1.0, -1)
moon_signal_mask = np.zeros((moon_signal_mask_size, moon_signal_mask_size), np.float32)
_ = cv2.circle(moon_signal_mask, (moon_signal_mask_r, moon_signal_mask_r), moon_signal_mask_r, 1.0, -1)
# setup dirs
if args.filter:
jpg_clipped_path = jpg_dir_path.parent / (jpg_dir_path.name + args.clipped_suffix)
jpg_clipped_path.mkdir(parents=True, exist_ok=True)
jpg_sun_binary_path = jpg_dir_path.parent / (jpg_dir_path.name + args.sun_binary_suffix)
jpg_sun_binary_path.mkdir(parents=True, exist_ok=True)
jpg_moon_binary_path = jpg_dir_path.parent / (jpg_dir_path.name + args.moon_binary_suffix)
if args.fix_angle != -1:
jpg_moon_binary_path.mkdir(parents=True, exist_ok=True)
jpg_circled_path = jpg_dir_path.parent / (jpg_dir_path.name + args.circled_suffix)
jpg_circled_path.mkdir(parents=True, exist_ok=True)
jpg_output_path = jpg_dir_path.parent / (jpg_dir_path.name + args.output_suffix)
jpg_output_path.mkdir(parents=True, exist_ok=True)
# read circles if given
if args.circles != '':
# get absolute path
circles_data_json_path = Path(os.path.abspath(os.path.expanduser(args.circles)))
if circles_data_json_path.exists():
# error out if given a directory
if circles_data_json_path.is_dir():
click.secho('ERROR: --circles is a directory, please provide a JSON file.', fg='red')
sys.exit(0)
# raise IsADirectoryError(errno.EISDIR, os.strerror(errno.EISDIR), path)
with circles_data_json_path.open('r') as f:
circles_data = json.load(f)
# check if JSON file has data for all JPGs in INPUT directory
for jpg_path in input_paths:
if jpg_path.name not in circles_data or 'sun' not in circles_data[jpg_path.name]:
click.secho(
f'ERROR: The sun coordinates data for the JPG image "{jpg_path.name}" was not found in --circles "{str(circles_data_json_path)}". Remove the --circles argument to process the image, or provide the correct --circles JSON file that contains the sun coordinates data for the JPG image "{jpg_path.name}"',
fg='red'
)
sys.exit(0)
if args.fix_angle != -1 and 'moon' not in circles_data[jpg_path.name]:
click.secho(
f'ERROR: The moon coordinates data for the JPG image "{jpg_path.name}" was not found in --circles "{str(circles_data_json_path)}". Remove the --circles argument to process the image, or provide the correct --circles JSON file that contains the moon coordinates data for the JPG image "{jpg_path.name}"',
fg='red'
)
sys.exit(0)
# looks good
click.secho(f'INFO: Using existing coordinates data: "{args.circles}".')
else:
# doesn't exist, prompt user
ok = click.confirm(
click.style(
f'ATTENTION: --circles file does not exist. Continue to run the detection algorithm and save the results to: \'{str(circles_data_json_path)}\'?',
fg='yellow'
),
default=True,
abort=False
)
if ok:
# initialize circles_data
circles_data = {}
else:
# user does not want to continue, exit
# raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), path)
sys.exit(0)
else:
circles_data_json_path = jpg_dir_path.parent / 'circles_data.json'
circles_data = {}
if not circles_data:
# get number of workers
workers = args.workers
if args.workers < 1:
# detect cpu and memory
# 32 cpu = 98 GB - 26GB
estimated_memory_per_worker = 3000000000 / (3456 * 4608) * img_size
ram_workers = psutil.virtual_memory().available // estimated_memory_per_worker
cpu_workers = psutil.cpu_count(logical=False)
workers = int(max(1, min(ram_workers, cpu_workers)))
# don't need more workers than input images
if workers > num_images:
workers = num_images
# log workers
if workers == 1:
click.secho('INFO: Starting 1 worker.')
else:
click.secho(f'INFO: Starting {workers} workers.')
# setup params
params = {
'filter': args.filter,
'clipped_cutoff': args.clipped_cutoff,
'empty_cutoff': args.empty_cutoff,
'sun_threshold': args.sun_threshold,
'sun_mask': sun_mask,
'sun_mask_r': sun_mask_r,
'fix_angle': args.fix_angle,
'canvas_size': canvas_size,
'moon_threshold_mod': args.moon_threshold_mod,
'moon_mask': moon_mask,
'moon_signal_mask': moon_signal_mask,
'moon_signal_mask_size': moon_signal_mask_size,
'moon_mask_r': moon_mask_r,
'jpg_circled_path': jpg_circled_path,
'jpg_sun_binary_path': jpg_sun_binary_path,
'jpg_moon_binary_path': jpg_moon_binary_path,
}
# create queues
input_queue = Queue()
output_queue = Queue()
# submit tasks
for jpg_path in input_paths:
input_queue.put(jpg_path)
# input process
input_processes = []
for i in range(workers):
ip = Process(target=find_sun_and_moon_worker, args=(input_queue, output_queue, params))
ip.start()
input_processes.append(ip)
input_queue.put('STOP')
# save circles data
for _ in tqdm(input_paths, desc='Processing', ascii=True, unit='img', dynamic_ncols=True, smoothing=0.1):
if args.fix_angle != -1:
jpg_path, sun_x, sun_y, moon_x, moon_y, min_dist, moon_signal_center = output_queue.get()
else:
jpg_path, sun_x, sun_y = output_queue.get()
# check for errors
if sun_x == -1:
click.secho(f'\nERROR: {jpg_path}: {sun_y}.', fg='red')
for p in input_processes:
p.kill()
sys.exit(0)
if args.fix_angle != -1:
circles_data[jpg_path.name] = {
'moon': (moon_x, moon_y, moon_mask_r, min_dist, moon_signal_center),
'sun': (sun_x, sun_y, sun_mask_r)
}
else:
circles_data[jpg_path.name] = {'sun': (sun_x, sun_y, sun_mask_r)}
circles_data_json_path.write_text(json.dumps(circles_data))
# find the first valid angle
if args.fix_angle != -1:
for jpg_path in input_paths:
moon_x, moon_y, moon_mask_r, min_dist, moon_signal_center = circles_data[jpg_path.name]['moon']
if min_dist < (sun_mask_r + moon_mask_r - args.min_phase_rotation_group_threshold):
dx, dy = moon_x - moon_signal_center, moon_y - moon_signal_center
moon_degree = np.arctan2(dx, dy) * 180 / np.pi
if moon_degree > 0:
angle = args.fix_angle - moon_degree
else:
angle = args.fix_angle - 180 - moon_degree
break
# compute output image and update circles_data
for jpg_path in tqdm(input_paths, desc=' Saving', ascii=True, unit='img', dynamic_ncols=True, smoothing=0.1):
output_image(jpg_path, circles_data[jpg_path.name])
# exit
sys.exit(0)