-
Notifications
You must be signed in to change notification settings - Fork 31
/
adaptive_avg_pooling-inl.h
160 lines (144 loc) · 5.69 KB
/
adaptive_avg_pooling-inl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2018 by Contributors
* \file adaptive_avg_pooling-inl.h
* \brief adaptive average pooling operator
* \author Hang Zhang
*/
#ifndef MXNET_OPERATOR_CONTRIB_ADAPTIVE_AVG_POOLING_INL_H_
#define MXNET_OPERATOR_CONTRIB_ADAPTIVE_AVG_POOLING_INL_H_
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <mxnet/ndarray.h>
#include <map>
#include <vector>
#include <string>
#include <utility>
/* contrib
#include "../ndarray/ndarray_function.h"
#include "./operator_common.h"
#include "./mxnet_op.h"
#include "./mshadow_op.h"
*/
#include "../../ndarray/ndarray_function.h"
#include "../operator_common.h"
#include "../mxnet_op.h"
#include "../mshadow_op.h"
namespace mxnet {
namespace op {
struct AdaptiveAvgPoolParam : public dmlc::Parameter<AdaptiveAvgPoolParam> {
mxnet::Tuple<int> output_size;
DMLC_DECLARE_PARAMETER(AdaptiveAvgPoolParam) {
DMLC_DECLARE_FIELD(output_size).set_default(mxnet::Tuple<int>())
.describe("int (output size) or a tuple of int for output (height, width).");
}
};
static inline bool IsWriting(const OpReqType ort) {
return ort == kWriteTo || ort == kWriteInplace;
}
template<typename xpu, typename DType, typename AccReal>
void AdaptiveAvgPoolUpdateOutput(mshadow::Stream<cpu> *s,
const std::vector<TBlob> &input,
const std::vector<TBlob> &output);
template<typename xpu, typename DType, typename AccReal>
void AdaptiveAvgPoolUpdateGradInput(mshadow::Stream<cpu> *s,
const std::vector<TBlob> &input,
const std::vector<TBlob> &output);
#if MXNET_USE_CUDA
template<typename xpu, typename DType, typename AccReal>
void AdaptiveAvgPoolUpdateOutput(mshadow::Stream<gpu> *s,
const std::vector<TBlob> &input,
const std::vector<TBlob> &output);
template<typename xpu, typename DType, typename AccReal>
void AdaptiveAvgPoolUpdateGradInput(mshadow::Stream<gpu> *s,
const std::vector<TBlob> &input,
const std::vector<TBlob> &output);
#endif // MXNET_USE_CUDA
template <typename xpu>
inline void AdaptiveAvgPoolOpForward(const nnvm::NodeAttrs& attrs,
const OpContext &ctx,
const std::vector<TBlob> &inputs,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &outputs) {
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
mshadow::Stream<xpu> *s = ctx.get_stream<xpu>();
MSHADOW_REAL_TYPE_SWITCH_EX(inputs[0].type_flag_, DType, AccReal, {
AdaptiveAvgPoolUpdateOutput<xpu, DType, AccReal>(s, inputs, outputs);
});
}
template <typename xpu>
inline void AdaptiveAvgPoolOpBackward(const nnvm::NodeAttrs& attrs,
const OpContext &ctx,
const std::vector<TBlob> &inputs,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &outputs) {
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
mshadow::Stream<xpu> *s = ctx.get_stream<xpu>();
if (IsWriting(req[0])) {
// zero grad before backwarding
MSHADOW_TYPE_SWITCH(inputs[0].type_flag_, DType, {
Fill<false>(s, outputs[0], kWriteTo, 0);
})
}
MSHADOW_REAL_TYPE_SWITCH_EX(inputs[0].type_flag_, DType, AccReal, {
AdaptiveAvgPoolUpdateGradInput<xpu, DType, AccReal>(s, inputs, outputs);
});
}
static bool AdaptiveAvgPoolOpInferShape(const nnvm::NodeAttrs& attrs,
mxnet::ShapeVector *in_shape,
mxnet::ShapeVector *out_shape) {
using namespace mshadow;
CHECK_EQ(in_shape->size(), 1U) << "Input:[data]";
CHECK_EQ(out_shape->size(), 1U) << "Output:[data]";
const AdaptiveAvgPoolParam& param = nnvm::get<AdaptiveAvgPoolParam>(attrs.parsed);
mxnet::TShape dshape(in_shape->at(0));
if (mxnet::op::shape_is_none(dshape)) return false;
if (param.output_size.ndim() == 0) {
dshape[2] = 1;
dshape[3] = 1;
} else if (param.output_size.ndim() == 1) {
dshape[2] = param.output_size[0];
dshape[3] = param.output_size[0];
} else if (param.output_size.ndim() == 2) {
dshape[2] = param.output_size[0];
dshape[3] = param.output_size[1];
} else {
dshape[2] = 1;
dshape[3] = 1;
}
out_shape->clear();
out_shape->push_back(dshape);
return true;
}
using namespace mshadow;
template<typename xpu, int Dim, typename DType>
MSHADOW_XINLINE int get_stride(Tensor<xpu, Dim, DType> tensor, int idx) {
int stride = 1;
for (int i = Dim-2; i >= idx; --i) {
stride *= tensor.size(i+1);
}
return stride;
}
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_CONTRIB_ADAPTIVE_AVG_POOLING_INL_H_