forked from angeloziletti/ai4materials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
153 lines (121 loc) · 6.42 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from setuptools import setup, find_packages, Extension
# To use a consistent encoding
from codecs import open
# Other stuff
import sys, os, fileinput
import versioneer
here = os.path.dirname(os.path.realpath(__file__))
def main():
# Start package setup
# Get the long description from the README file
with open(os.path.join(here, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
setup(
# template at https://github.com/pypa/sampleproject/blob/master/setup.py
name='ai4materials',
# Versions should comply with PEP440. For a discussion on single-sourcing
# the version across setup.py and the project code, see
# https://packaging.python.org/en/latest/single_source_version.html
# version=get_property('__version__'),
version="0.1",
description='Data-analytics modeling of materials science data', long_description=long_description,
zip_safe=True,
# The project's main homepage.
url='https://https://github.com/angeloziletti/ai4materials',
# Author details
author='Ziletti, Angelo and Leitherer, Andreas', author_email='angelo.ziletti@gmail.com, andreas.leitherer@gmail.com',
# Choose your license
license='Apache License 2.0',
# See https://pypi.python.org/pypi?%3Aaction=list_classifiers
classifiers=[# How mature is this project? Common values are
# 3 - Alpha
# 4 - Beta
# 5 - Production/Stable
'Development Status :: 3 - Alpha',
# Indicate who your project is intended for
'Intended Audience :: Science/Research',
'Topic :: Physics :: Materials science :: Machine learning :: Deep learning :: Data analytics',
# Pick your license as you wish (should match "license" above)
'License :: Apache Licence 2.0',
# Specify the Python versions you support here. In particular, ensure
# that you indicate whether you support Python 2, Python 3 or both.
# 'Programming Language :: Python :: 2.7',
# 'Programming Language :: Python :: 3.5',
# 'Programming Language :: Python :: 3.6',
# 'Programming Language :: Python :: 3.7'
],
# What does your project relate to?
keywords='Data analytics of materials science data.',
# You can just specify the packages manually here if your project is
# simple. Or you can use find_packages().
packages=['ai4materials', 'ai4materials.dataprocessing', 'ai4materials.descriptors',
'ai4materials.interpretation', 'ai4materials.visualization',
'ai4materials.models', 'ai4materials.utils', 'ai4materials.external'],
#packages=find_packages(include=['ai4materials']),
package_dir={'ai4materials': 'ai4materials'},
# Alternatively, if you want to distribute just a my_module.py, uncomment
# this:
# py_modules=["my_module"],
# List run-time dependencies here. These will be installed by pip when
# your project is installed. For an analysis of "install_requires" vs pip's
# requirements files see:
# https://packaging.python.org/en/latest/requirements.html
install_requires=[
'ase>=3.19.0', 'tensorflow==1.13.1', 'keras==2.2.4',
'scikit-learn>=0.17.1', 'pint', 'future',
'pandas>=0.25.0', 'enum34', 'pymatgen>=2020.3.13',
'keras-tqdm', 'seaborn', 'paramiko',
'scipy', 'nose>=1.0', 'numpy', 'h5py<=2.9.0',
'cython>=0.19', 'Jinja2', 'progressbar'],
#
#'ase==3.15.0', # neighbors list does not work for ase 3.16
# 'scikit-learn >=0.17.1', 'tensorflow==1.8.0', 'pint', 'future', 'pandas',
# 'bokeh',
# 'enum34', 'pymatgen', 'keras==1.2.0', 'pillow>=2.7.0', 'mendeleev', 'keras-tqdm',
# 'seaborn', 'paramiko', 'scipy', 'nose>=1.0', 'sqlalchemy', 'theano==0.9.0',
# 'numpy', 'h5py', 'cython>=0.19', 'pyshtools', 'Jinja2'],
# 'bokeh==0.11.0',
# 'multiprocessing',
# , 'asap3'],
#'mayavi', 'weave'],
#setup_requires=['nomadcore', 'atomic_data'],
# List additional groups of dependencies here (e.g. development
# dependencies). You can install these using the following syntax,
# for example:
# $ pip install -e .[dev,test]
extras_require={
# 'dev': ['check-manifest'],
'test': ['pytest', 'coverage'],
},
# https://mike.zwobble.org/2013/05/adding-git-or-hg-or-svn-dependencies-in-setup-py/
# add atomic_data and nomadcore
dependency_links=['https://github.com/libAtoms/QUIP',
'https://github.com/FXIhub/condor.git'],
# If there are data files included in your packages that need to be
# installed, specify them here. If using Python 2.6 or less, then these
# have to be included in MANIFEST.in as well.
package_data={
'ai4materials': ['descriptors/descriptors.nomadmetainfo.json',
'data/nn_models/*.h5', 'data/nn_models/*.json', 'utils/units.txt', 'utils/constants.txt',
'data/PROTOTYPES/*/*/*.in', 'data/training_data/*.pkl', 'data/training_data/*.json'
]},
# Although 'package_data' is the preferred approach, in some case you may
# need to place data files outside of your packages. See:
# http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa
# In this case, 'data_file' will be installed into '<sys.prefix>/my_data'
# data_files=[('my_data', ['data/data_file'])],
# To provide executable scripts, use entry points in preference to the
# "scripts" keyword. Entry points provide cross-platform support and allow
# pip to create the appropriate form of executable for the target platform.
# entry_points={
# 'console_scripts': [
# 'condor=condor.scripts.condor_script:main',
# ],
# },
# test_suite = "condor.tests.test_all",
project_urls={ # Optional
'Bug Reports': 'https://gitlab.com/ai4materials/issues', 'Source': 'https://gitlab.com/ai4materials/', },
)
# Run main function by default
if __name__ == "__main__":
main()