-
Notifications
You must be signed in to change notification settings - Fork 628
/
data_augmentation.py
329 lines (259 loc) · 12.4 KB
/
data_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# coding=utf-8
# Copyright 2020 Huawei Technologies Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TinyBERT data augmentation."""
import random
import sys
import os
import unicodedata
import re
import logging
import csv
import argparse
import torch
import numpy as np
from transformer import BertTokenizer, BertForMaskedLM
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
StopWordsList = ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours',
'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself',
'they', 'them', 'their', 'theirs', 'themselves', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be',
'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because',
'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after',
'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here',
'there', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so',
'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've',
'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven',
"haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't",
'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't", "'s", "'re"]
def strip_accents(text):
"""
Strip accents from input String.
:param text: The input string.
:type text: String.
:returns: The processed String.
:rtype: String.
"""
try:
text = unicode(text, 'utf-8')
except (TypeError, NameError):
# unicode is a default on python 3
pass
text = unicodedata.normalize('NFD', text)
text = text.encode('ascii', 'ignore')
text = text.decode("utf-8")
return str(text)
# valid string only includes al
def _is_valid(string):
# Adding string.lower to also support cased model
return True if not re.search('[^a-z]', string.lower()) else False
def _read_tsv(input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r", encoding="utf-8") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(unicode(cell, 'utf-8') for cell in line)
lines.append(line)
return lines
def prepare_embedding_retrieval(glove_file, vocab_size=100000):
cnt = 0
words = []
embeddings = {}
# only read first 100,000 words for fast retrieval
with open(glove_file, 'r', encoding='utf-8') as fin:
for line in fin:
items = line.strip().split()
words.append(items[0])
embeddings[items[0]] = [float(x) for x in items[1:]]
cnt += 1
if cnt == vocab_size:
break
vocab = {w: idx for idx, w in enumerate(words)}
ids_to_tokens = {idx: w for idx, w in enumerate(words)}
vector_dim = len(embeddings[ids_to_tokens[0]])
emb_matrix = np.zeros((vocab_size, vector_dim))
for word, v in embeddings.items():
if word == '<unk>':
continue
emb_matrix[vocab[word], :] = v
# normalize each word vector
d = (np.sum(emb_matrix ** 2, 1) ** 0.5)
emb_norm = (emb_matrix.T / d).T
return emb_norm, vocab, ids_to_tokens
class DataAugmentor(object):
def __init__(self, model, tokenizer, emb_norm, vocab, ids_to_tokens, M, N, p):
self.model = model
self.tokenizer = tokenizer
self.emb_norm = emb_norm
self.vocab = vocab
self.ids_to_tokens = ids_to_tokens
self.M = M
self.N = N
self.p = p
def _word_distance(self, word):
if word not in self.vocab.keys():
return []
word_idx = self.vocab[word]
word_emb = self.emb_norm[word_idx]
dist = np.dot(self.emb_norm, word_emb.T)
dist[word_idx] = -np.Inf
candidate_ids = np.argsort(-dist)[:self.M]
candidate_words = [self.ids_to_tokens[idx] for idx in candidate_ids][:self.M]
if word.istitle():
# capitialize the first letter of each word to preserve case
candidate_words = [w.title() for w in candidate_words]
return candidate_words
def _masked_language_model(self, sent, word_pieces, mask_id):
if mask_id >= 512:
return []
tokenized_text = self.tokenizer.tokenize(sent)
tokenized_text = ['[CLS]'] + tokenized_text
tokenized_len = len(tokenized_text)
tokenized_text = word_pieces + ['[SEP]'] + tokenized_text[1:] + ['[SEP]']
if len(tokenized_text) > 512:
tokenized_text = tokenized_text[:512]
if tokenized_len >= 512:
tokenized_len = 511
token_ids = self.tokenizer.convert_tokens_to_ids(tokenized_text)
segments_ids = [0] * (tokenized_len + 1) + [1] * (len(tokenized_text) - tokenized_len - 1)
tokens_tensor = torch.tensor([token_ids]).to(device)
segments_tensor = torch.tensor([segments_ids]).to(device)
self.model.to(device)
predictions = self.model(tokens_tensor, segments_tensor)
word_candidates = torch.argsort(predictions[0, mask_id], descending=True)[:self.M].tolist()
word_candidates = self.tokenizer.convert_ids_to_tokens(word_candidates)
return list(filter(lambda x: x.find("##"), word_candidates))
def _word_augment(self, sentence, mask_token_idx, mask_token):
word_pieces = self.tokenizer.tokenize(sentence)
word_pieces = ['[CLS]'] + word_pieces
tokenized_len = len(word_pieces)
token_idx = -1
for i in range(1, tokenized_len):
if "##" not in word_pieces[i]:
token_idx = token_idx + 1
if token_idx < mask_token_idx:
word_piece_ids = []
elif token_idx == mask_token_idx:
word_piece_ids = [i]
else:
break
else:
word_piece_ids.append(i)
if len(word_piece_ids) == 1:
word_pieces[word_piece_ids[0]] = '[MASK]'
candidate_words = self._masked_language_model(
sentence, word_pieces, word_piece_ids[0])
elif len(word_piece_ids) > 1:
candidate_words = self._word_distance(mask_token)
else:
logger.info("invalid input sentence!")
if len(candidate_words)==0:
candidate_words.append(mask_token)
return candidate_words
def augment(self, sent):
candidate_sents = [sent]
tokens = self.tokenizer.basic_tokenizer.tokenize(sent)
candidate_words = {}
for (idx, word) in enumerate(tokens):
if _is_valid(word) and word.lower() not in StopWordsList:
candidate_words[idx] = self._word_augment(sent, idx, word)
logger.info(candidate_words)
cnt = 0
while cnt < self.N:
new_sent = list(tokens)
for idx in candidate_words.keys():
candidate_word = random.choice(candidate_words[idx])
x = random.random()
if x < self.p:
new_sent[idx] = candidate_word
if " ".join(new_sent) not in candidate_sents:
candidate_sents.append(' '.join(new_sent))
cnt += 1
return candidate_sents
class AugmentProcessor(object):
def __init__(self, augmentor, glue_dir, task_name):
self.augmentor = augmentor
self.glue_dir = glue_dir
self.task_name = task_name
self.augment_ids = {'MRPC': [3, 4], 'MNLI': [8, 9], 'CoLA': [3], 'SST-2': [0],
'STS-B': [7, 8], 'QQP': [3, 4], 'QNLI': [1, 2], 'RTE': [1, 2]}
self.filter_flags = { 'MRPC': True, 'MNLI': True, 'CoLA': False, 'SST-2': True,
'STS-B': True, 'QQP': True, 'QNLI': True, 'RTE': True}
assert self.task_name in self.augment_ids
def read_augment_write(self):
task_dir = os.path.join(self.glue_dir, self.task_name)
train_samples = _read_tsv(os.path.join(task_dir, "train.tsv"))
output_filename = os.path.join(task_dir, "train_aug.tsv")
augment_ids_ = self.augment_ids[self.task_name]
filter_flag = self.filter_flags[self.task_name]
with open(output_filename, 'w', newline='', encoding="utf-8") as f:
writer = csv.writer(f, delimiter="\t")
for (i, line) in enumerate(train_samples):
if i == 0 and filter_flag:
writer.writerow(line)
continue
for augment_id in augment_ids_:
sent = line[augment_id]
augmented_sents = self.augmentor.augment(sent)
for augment_sent in augmented_sents:
line[augment_id] = augment_sent
writer.writerow(line)
if (i+1) % 1000 == 0:
logger.info("Having been processing {} examples".format(str(i+1)))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_bert_model", default=None, type=str, required=True,
help="Downloaded pretrained model (bert-base-cased/uncased) is under this folder")
parser.add_argument("--glove_embs", default=None, type=str, required=True,
help="Glove word embeddings file")
parser.add_argument("--glue_dir", default=None, type=str, required=True,
help="GLUE data dir")
parser.add_argument("--task_name", default=None, type=str, required=True,
help="Task(eg. CoLA, SST-2) that we want to do data augmentation for its train set")
parser.add_argument("--N", default=30, type=int,
help="How many times is the corpus expanded?")
parser.add_argument("--M", default=15, type=int,
help="Choose from M most-likely words in the corresponding position")
parser.add_argument("--p", default=0.4, type=float,
help="Threshold probability p to replace current word")
args = parser.parse_args()
# logger.info(args)
default_params = {
"CoLA": {"N": 30},
"MNLI": {"N": 10},
"MRPC": {"N": 30},
"SST-2": {"N": 20},
"STS-b": {"N": 30},
"QQP": {"N": 10},
"QNLI": {"N": 20},
"RTE": {"N": 30}
}
if args.task_name in default_params:
args.N = default_params[args.task_name]["N"]
# Prepare data augmentor
tokenizer = BertTokenizer.from_pretrained(args.pretrained_bert_model)
model = BertForMaskedLM.from_pretrained(args.pretrained_bert_model)
model.eval()
emb_norm, vocab, ids_to_tokens = prepare_embedding_retrieval(args.glove_embs)
data_augmentor = DataAugmentor(model, tokenizer, emb_norm, vocab, ids_to_tokens, args.M, args.N, args.p)
# Do data augmentation
processor = AugmentProcessor(data_augmentor, args.glue_dir, args.task_name)
processor.read_augment_write()
if __name__ == "__main__":
main()