From fde061ccf8f0e72bbe15a5c4563d2feeb3a6c4c3 Mon Sep 17 00:00:00 2001 From: Thanaji Rao Thakkalapelli Date: Tue, 27 Aug 2024 01:14:27 -0700 Subject: [PATCH] Updated docker image version to 2.0.4 (#212) Co-authored-by: Thanaji Thakkalapelli --- README.md | 427 ++++++++++++++++++++++++++++++++++++------------------ 1 file changed, 286 insertions(+), 141 deletions(-) diff --git a/README.md b/README.md index 99cbfe6674f..6c58680d0e1 100644 --- a/README.md +++ b/README.md @@ -21,26 +21,19 @@ limitations under the License. - [Text Generation Inference on Habana Gaudi](#text-generation-inference-on-habana-gaudi) - [Table of contents](#table-of-contents) - [Running TGI on Gaudi](#running-tgi-on-gaudi) - - [Adjusting TGI parameters](#adjusting-tgi-parameters) - - [Running TGI with FP8 precision](#running-tgi-with-fp8-precision) - - [Currently supported configurations](#currently-supported-configurations) - - [LLama 7b BF16 on 1 Gaudi2 card](#llama-7b-bf16-on-1-gaudi2-card) - - [LLama 7b FP8 on 1 Gaudi2 card](#llama-7b-fp8-on-1-gaudi2-card) - - [LLama 70b BF16 on 8 Gaudi2 card](#llama-70b-bf16-on-8-gaudi2-card) - - [LLama 70b FP8 on 8 Gaudi2 card](#llama-70b-fp8-on-8-gaudi2-card) - - [Llava-next](#llava-next) - - [llava-v1.6-mistral-7b-hf BF16 on 1 Gaudi2 card](#llava-v16-mistral-7b-hf-bf16-on-1-gaudi2-card) - - [llava-v1.6-mistral-7b-hf FP8 on 1 Gaudi2 card](#llava-v16-mistral-7b-hf-fp8-on-1-gaudi2-card) + - [Running TGI with BF16 Precision](#running-tgi-with-bf16-precision) + - [Running TGI with FP8 Precision](#running-tgi-with-fp8-precision) + - [Adjusting TGI Parameters](#adjusting-tgi-parameters) - [Environment variables](#environment-variables) - [Profiler](#profiler) ## Running TGI on Gaudi -To use [🤗 text-generation-inference](https://github.com/huggingface/text-generation-inference) on Habana Gaudi/Gaudi2, follow these steps: +To use [🤗 text-generation-inference](https://github.com/huggingface/text-generation-inference) on Habana Gaudi/Gaudi2/Gaudi3, follow these steps: 1. Pull the official Docker image with: ```bash - docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1 + docker pull ghcr.io/huggingface/tgi-gaudi:2.0.4 ``` > [!NOTE] > Alternatively, you can build the Docker image using the `Dockerfile` located in this folder with: @@ -49,29 +42,32 @@ To use [🤗 text-generation-inference](https://github.com/huggingface/text-gene > ``` 2. Launch a local server instance: - i. On 1 Gaudi/Gaudi2 card + i. On 1 Gaudi card ```bash model=meta-llama/Llama-2-7b-hf + hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run - docker run -p 8080:80 -v $volume:/data --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.1 --model-id $model --max-input-tokens 1024 --max-total-tokens 2048 + docker run -p 8080:80 -v $volume:/data --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HUGGING_FACE_HUB_TOKEN=$hf_token -e ENABLE_HPU_GRAPH=true -e LIMIT_HPU_GRAPH=true -e USE_FLASH_ATTENTION=true -e FLASH_ATTENTION_RECOMPUTE=true --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.4 --model-id $model --max-input-tokens 1024 --max-total-tokens 2048 ``` - > For gated models such as [LLama](https://huggingface.co/meta-llama) or [StarCoder](https://huggingface.co/bigcode/starcoder), you will have to pass `-e HUGGING_FACE_HUB_TOKEN=` to the `docker run` command above with a valid Hugging Face Hub read token. + > For gated models such as [StarCoder](https://huggingface.co/bigcode/starcoder), you will have to pass `-e HUGGING_FACE_HUB_TOKEN=` to the `docker run` command above with a valid Hugging Face Hub read token. - ii. On 1 Gaudi/Gaudi2 card using pytorch eager mode with torch compile: + ii. On 1 Gaudi card using PyTorch eager mode with torch compile: ```bash model=meta-llama/Llama-2-7b-hf + hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run - docker run -p 8080:80 -v $volume:/data --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_LAZY_MODE=0 -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.1 --model-id $model --max-input-tokens 1024 --max-total-tokens 2048 + docker run -p 8080:80 -v $volume:/data --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_LAZY_MODE=0 -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HUGGING_FACE_HUB_TOKEN=$hf_token --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.4 --model-id $model --max-input-tokens 1024 --max-total-tokens 2048 ``` - iii. On 8 Gaudi/Gaudi2 cards: + iii. On 8 Gaudi cards: ```bash model=meta-llama/Llama-2-70b-hf + hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run - docker run -p 8080:80 -v $volume:/data --runtime=habana -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.1 --model-id $model --sharded true --num-shard 8 --max-input-tokens 1024 --max-total-tokens 2048 + docker run -p 8080:80 -v $volume:/data --runtime=habana -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HUGGING_FACE_HUB_TOKEN=$hf_token -e ENABLE_HPU_GRAPH=true -e LIMIT_HPU_GRAPH=true -e USE_FLASH_ATTENTION=true -e FLASH_ATTENTION_RECOMPUTE=true --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.4 --model-id $model --sharded true --num-shard 8 --max-input-tokens 1024 --max-total-tokens 2048 ``` 3. You can then send a simple request: ```bash @@ -80,125 +76,179 @@ To use [🤗 text-generation-inference](https://github.com/huggingface/text-gene -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":32}}' \ -H 'Content-Type: application/json' ``` -4. To run static benchmark test, please refer to [TGI's benchmark tool](https://github.com/huggingface/text-generation-inference/tree/main/benchmark). +4. Please note that the model warmup can take several minutes, especially for FP8 inference. To minimize this time in consecutive runs, please refer to [Disk Caching Eviction Policy](https://docs.habana.ai/en/latest/PyTorch/Model_Optimization_PyTorch/Optimization_in_PyTorch_Models.html#disk-caching-eviction-policy). + +### TGI-Gaudi Benchmark + +#### Static Batching Benchmark + To run static batching benchmark, please refer to [TGI's benchmark tool](https://github.com/huggingface/text-generation-inference/tree/main/benchmark). To run it on the same machine, you can do the following: * `docker exec -it bash` , pick the docker started from step 2 using docker ps * `text-generation-benchmark -t ` , pass the model-id from docker run command * after the completion of tests, hit ctrl+c to see the performance data summary. -5. To run continuous batching test, please refer to [examples](https://github.com/huggingface/tgi-gaudi/tree/habana-main/examples). - -## Adjusting TGI parameters +#### Continuous Batching Benchmark + To run continuous batching benchmark, please refer to [README in examples folder](https://github.com/huggingface/tgi-gaudi/blob/habana-main/examples/README.md). -Maximum sequence length is controlled by two arguments: -- `--max-input-tokens` is the maximum possible input prompt length. Default value is `4095`. -- `--max-total-tokens` is the maximum possible total length of the sequence (input and output). Default value is `4096`. - -Maximum batch size is controlled by two arguments: -- For prefill operation, please set `--max-batch-prefill-tokens` as `bs * max-input-tokens`, where `bs` is your expected maximum prefill batch size. -- For decode operation, please set `--max-batch-total-tokens` as `bs * max-total-tokens`, where `bs` is your expected maximum decode batch size. -- Please note that batch size will be always padded to the nearest multiplication of `BATCH_BUCKET_SIZE` and `PREFILL_BATCH_BUCKET_SIZE`. +### Tested Models and Configurations -To ensure greatest performance results, at the beginning of each server run, warmup is performed. It's designed to cover major recompilations while using HPU Graphs. It creates queries with all possible input shapes, based on provided parameters (described in this section) and runs basic TGI operations on them (prefill, decode, concatenate). +The following table contains models and configurations we have validated on Gaudi2. -Except those already mentioned, there are other parameters that need to be properly adjusted to improve performance or memory usage: +| Model | BF16 | FP8 | Single Card | Multi-Cards | +|-----------------------|------|-----|-------------|-------------| +| Llama2-7B | ✔ | ✔ | ✔ | ✔ | +| Llama2-70B | ✔ | ✔ | | ✔ | +| Llama3-8B | ✔ | ✔ | ✔ | ✔ | +| Llama3-70B | ✔ | ✔ | | ✔ | +| Llama3.1-8B | ✔ | ✔ | ✔ | ✔ | +| Llama3.1-70B | ✔ | ✔ | | ✔ | +| CodeLlama-13B | ✔ | ✔ | ✔ | | +| Mixtral-8x7B | ✔ | ✔ | ✔ | ✔ | +| Mistral-7B | ✔ | ✔ | ✔ | ✔ | +| Llava-v1.6-Mistral-7B | ✔ | ✔ | ✔ | | -- `PAD_SEQUENCE_TO_MULTIPLE_OF` determines sizes of input length buckets. Since warmup creates several graphs for each bucket, it's important to adjust that value proportionally to input sequence length. Otherwise, some out of memory issues can be observed. -- `ENABLE_HPU_GRAPH` enables HPU graphs usage, which is crucial for performance results. Recommended value to keep is `true` . -For more information and documentation about Text Generation Inference, checkout [the README](https://github.com/huggingface/text-generation-inference#text-generation-inference) of the original repo. +## Running TGI with BF16 Precision -## Running TGI with FP8 precision +The following are command examples for TGI models inference with BF16 precision. -TGI supports FP8 precision runs within the limits provided by [Intel Neural Compressor (INC)](https://docs.habana.ai/en/latest/PyTorch/Inference_on_PyTorch/Inference_Using_FP8.html). Models with FP8 can be ran by properly setting QUANT_CONFIG environment variable. Detailed instruction on how to use that variable can be found in [Optimum Habana FP8 guide](https://github.com/huggingface/optimum-habana/tree/main/examples/text-generation#running-with-fp8). From 2.0.4 release, Intel Neural Compressor (INC) is used by default for measuring and quantization. Habana Quantization Toolkit(HQT) will be removed in future releases. To use HQT, disable INC by setting `-e USE_INC=0`. Summarising that instruction in TGI cases: +### Llama2-7B on 1 Card -1. Measure quantization statistics of requested model by using [Optimum Habana measurement script](https://github.com/huggingface/optimum-habana/tree/main/examples/text-generation#running-with-fp8:~:text=use_deepspeed%20%2D%2Dworld_size%208-,run_lm_eval.py,-%5C%0A%2Do%20acc_70b_bs1_measure.txt) -2. Run requested model in TGI with proper QUANT_CONFIG setting - e.g. `-e QUANT_CONFIG=./quantization_config/maxabs_quant.json`. +```bash +model=meta-llama/Llama-2-7b-chat-hf +hf_token=YOUR_ACCESS_TOKEN +volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run -> [!NOTE] -> Only models pointed in [supported configurations](#currently-supported-configurations) are guaranteed to work with FP8 +docker run -p 8080:80 \ + --runtime=habana \ + -v $volume:/data \ + -e HABANA_VISIBLE_DEVICES=all \ + -e HUGGING_FACE_HUB_TOKEN=$hf_token \ + -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ + -e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \ + -e MAX_TOTAL_TOKENS=2048 \ + -e PREFILL_BATCH_BUCKET_SIZE=2 \ + -e BATCH_BUCKET_SIZE=32 \ + -e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \ + -e ENABLE_HPU_GRAPH=true \ + -e LIMIT_HPU_GRAPH=true \ + -e USE_FLASH_ATTENTION=true \ + -e FLASH_ATTENTION_RECOMPUTE=true \ + --cap-add=sys_nice \ + --ipc=host \ + ghcr.io/huggingface/tgi-gaudi:2.0.4 \ + --model-id $model \ + --max-input-length 1024 --max-total-tokens 2048 \ + --max-batch-prefill-tokens 2048 --max-batch-total-tokens 65536 \ + --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64 +``` -Additional hints to quantize model for TGI when using `run_lm_eval.py`: -* use `--limit_hpu_graphs` flag to save memory -* try to model your use case situation by adjusting `--batch_size` , `--max_new_tokens 512` and `--max_input_tokens 512`; in case of memory issues, lower those values -* use dataset/tasks suitable for your use case (see `--help` for defining tasks/datasets) +### Llama2-70B on 8 cards -## Currently supported configurations +```bash +model=meta-llama/Llama-2-70b-chat-hf +hf_token=YOUR_ACCESS_TOKEN +volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run -Not all features of TGI are currently supported as this is still a work in progress. -Currently supported and validated configurations (other configurations are not guaranteed to work or ensure reasonable performance): +docker run -p 8080:80 \ + --runtime=habana \ + -v $volume:/data \ + -e HABANA_VISIBLE_DEVICES=all \ + -e HUGGING_FACE_HUB_TOKEN=$hf_token \ + -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ + -e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \ + -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \ + -e MAX_TOTAL_TOKENS=2048 \ + -e BATCH_BUCKET_SIZE=256 \ + -e PREFILL_BATCH_BUCKET_SIZE=4 \ + -e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \ + -e ENABLE_HPU_GRAPH=true \ + -e LIMIT_HPU_GRAPH=true \ + -e USE_FLASH_ATTENTION=true \ + -e FLASH_ATTENTION_RECOMPUTE=true \ + --cap-add=sys_nice \ + --ipc=host \ + ghcr.io/huggingface/tgi-gaudi:2.0.4 \ + --model-id $model \ + --sharded true --num-shard 8 \ + --max-input-length 1024 --max-total-tokens 2048 \ + --max-batch-prefill-tokens 4096 --max-batch-total-tokens 524288 \ + --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512 +``` -### LLama 7b BF16 on 1 Gaudi2 card +### Llama3.1-8B on 1 card ```bash -model=meta-llama/Llama-2-7b-chat-hf -hf_token=YOUR_ACCESS_TOKEN # Llama2 is a gated model and requires a special access token +model=meta-llama/Meta-Llama-3.1-8B-Instruct +hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ -v $volume:/data \ -e HABANA_VISIBLE_DEVICES=all \ - -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ - -e HF_HUB_ENABLE_HF_TRANSFER=1 \ -e HUGGING_FACE_HUB_TOKEN=$hf_token \ - -e PREFILL_BATCH_BUCKET_SIZE=1 \ - -e BATCH_BUCKET_SIZE=16 \ - -e PAD_SEQUENCE_TO_MULTIPLE_OF=128 \ + -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ + -e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \ + -e MAX_TOTAL_TOKENS=2048 \ + -e PREFILL_BATCH_BUCKET_SIZE=2 \ + -e BATCH_BUCKET_SIZE=32 \ + -e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \ -e ENABLE_HPU_GRAPH=true \ -e LIMIT_HPU_GRAPH=true \ -e USE_FLASH_ATTENTION=true \ -e FLASH_ATTENTION_RECOMPUTE=true \ --cap-add=sys_nice \ --ipc=host \ - ghcr.io/huggingface/tgi-gaudi:2.0.1 \ + ghcr.io/huggingface/tgi-gaudi:2.0.4 \ --model-id $model \ - --max-input-tokens 1024 \ - --max-batch-prefill-tokens 4096 \ - --max-total-tokens 2048 \ - --max-batch-size 16 + --max-input-length 1024 --max-total-tokens 2048 \ + --max-batch-prefill-tokens 2048 --max-batch-total-tokens 65536 \ + --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64 ``` -### LLama 7b FP8 on 1 Gaudi2 card +### Llama3.1-70B 8 cards ```bash -model=meta-llama/Llama-2-7b-chat-hf -hf_token=YOUR_ACCESS_TOKEN # Llama2 is a gated model and requires a special access token +model=meta-llama/Meta-Llama-3.1-70B-Instruct +hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ -v $volume:/data \ - -v $PWD/quantization_config:/usr/src/quantization_config \ - -v $PWD/hqt_output:/usr/src/hqt_output \ -e HABANA_VISIBLE_DEVICES=all \ - -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ - -e HF_HUB_ENABLE_HF_TRANSFER=1 \ -e HUGGING_FACE_HUB_TOKEN=$hf_token \ - -e PREFILL_BATCH_BUCKET_SIZE=1 \ - -e BATCH_BUCKET_SIZE=16 \ - -e PAD_SEQUENCE_TO_MULTIPLE_OF=128 \ + -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ + -e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \ + -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \ + -e MAX_TOTAL_TOKENS=2048 \ + -e BATCH_BUCKET_SIZE=256 \ + -e PREFILL_BATCH_BUCKET_SIZE=4 \ + -e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \ -e ENABLE_HPU_GRAPH=true \ -e LIMIT_HPU_GRAPH=true \ -e USE_FLASH_ATTENTION=true \ -e FLASH_ATTENTION_RECOMPUTE=true \ - -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ --cap-add=sys_nice \ --ipc=host \ - ghcr.io/huggingface/tgi-gaudi:2.0.1 \ + ghcr.io/huggingface/tgi-gaudi:2.0.4 \ --model-id $model \ - --max-input-tokens 1024 \ - --max-batch-prefill-tokens 4096 \ - --max-total-tokens 2048 \ - --max-batch-size 16 + --sharded true --num-shard 8 \ + --max-input-length 1024 --max-total-tokens 2048 \ + --max-batch-prefill-tokens 4096 --max-batch-total-tokens 524288 \ + --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512 ``` -### LLama 70b BF16 on 8 Gaudi2 card +### Llava-v1.6-Mistral-7B on 1 card + +In Llava-v1.6-Mistral-7B, an image usually accounts for 2000 input tokens. For example, an image of size 512x512 is represented by 2800 tokens. Thus, `max-input-tokens` must be larger than the number of tokens associated with the image. Otherwise the image may be truncated. We set `BASE_IMAGE_TOKENS=2048` as the default image token value. This is the minimum value of `max-input-tokens`. You can override the environment variable `BASE_IMAGE_TOKENS` to change this value. The warmup will generate graphs with input length from `BASE_IMAGE_TOKENS` to `max-input-tokens`. For Llava-v1.6-Mistral-7B, the value of `max-batch-prefill-tokens` is 16384, which is calcualted as follows: `prefill_batch_size` = `max-batch-prefill-tokens` / `max-input-tokens`. + +> Note: Multi-card Llava-v1.6-Mistral-7B inference is currently not supported. ```bash -model=meta-llama/Llama-2-70b-chat-hf -hf_token=YOUR_ACCESS_TOKEN # Llama2 is a gated model and requires a special access token +model=llava-hf/llava-v1.6-mistral-7b-hf volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ @@ -207,33 +257,77 @@ docker run -p 8080:80 \ -e HABANA_VISIBLE_DEVICES=all \ -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ -e HF_HUB_ENABLE_HF_TRANSFER=1 \ + -e ENABLE_HPU_GRAPH=true \ + -e LIMIT_HPU_GRAPH=true \ + -e USE_FLASH_ATTENTION=true \ + -e FLASH_ATTENTION_RECOMPUTE=true \ + -e PREFILL_BATCH_BUCKET_SIZE=1 \ + -e BATCH_BUCKET_SIZE=1 \ + --cap-add=sys_nice \ + --ipc=host \ + ghcr.io/huggingface/tgi-gaudi:2.0.4 \ + --model-id $model \ + --max-input-tokens 4096 --max-batch-prefill-tokens 16384 \ + --max-total-tokens 8192 --max-batch-total-tokens 32768 +``` + +Send the simple request. +```bash +curl -N 127.0.0.1:8080/generate_stream \ + -X POST \ + -d '{"inputs":"![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)What is this a picture of?\n\n","parameters":{"max_new_tokens":16, "seed": 42}}' \ + -H 'Content-Type: application/json' +``` + +## Running TGI with FP8 Precision + +TGI-Gaudi supports FP8 precision inference with INC (Intel Neural Compressor) and HQT (Habana Quantization Toolkit). FP8 inference can be run by setting QUANT_CONFIG environment variable in the docker command. From TGI-Gaudi 2.0.4 release, INC is used by default for quantization. HQT will be removed in future releases. To use HQT, disable INC by setting `-e USE_INC=0` in docker command. + +To run FP8 Inference: + +1. Measure statistics by using [Optimum Habana measurement script](https://github.com/huggingface/optimum-habana/tree/main/examples/text-generation#running-with-fp8:~:text=use_deepspeed%20%2D%2Dworld_size%208-,run_lm_eval.py,-%5C%0A%2Do%20acc_70b_bs1_measure.txt) +2. Run the model in TGI with QUANT_CONFIG setting - e.g. `-e QUANT_CONFIG=./quantization_config/maxabs_quant.json`. + +The following are the commmand examples for FP8 inference based on the assumption that measurement is done in the first step above. +### Llama2-7B on 1 Card + +```bash +model=meta-llama/Llama-2-7b-chat-hf +hf_token=YOUR_ACCESS_TOKEN +volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run + +docker run -p 8080:80 \ + --runtime=habana \ + -v $volume:/data \ + -v $PWD/quantization_config:/usr/src/quantization_config \ + -v $PWD/hqt_output:/usr/src/hqt_output \ + -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ + -e HABANA_VISIBLE_DEVICES=all \ -e HUGGING_FACE_HUB_TOKEN=$hf_token \ - -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \ - -e PREFILL_BATCH_BUCKET_SIZE=1 \ - -e BATCH_BUCKET_SIZE=256 \ - -e PAD_SEQUENCE_TO_MULTIPLE_OF=128 \ + -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ + -e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \ + -e MAX_TOTAL_TOKENS=2048 \ + -e PREFILL_BATCH_BUCKET_SIZE=2 \ + -e BATCH_BUCKET_SIZE=32 \ + -e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \ -e ENABLE_HPU_GRAPH=true \ -e LIMIT_HPU_GRAPH=true \ -e USE_FLASH_ATTENTION=true \ -e FLASH_ATTENTION_RECOMPUTE=true \ --cap-add=sys_nice \ --ipc=host \ - ghcr.io/huggingface/tgi-gaudi:2.0.1 \ + ghcr.io/huggingface/tgi-gaudi:2.0.4 \ --model-id $model \ - --max-input-tokens 1024 \ - --max-batch-prefill-tokens 16384 \ - --max-total-tokens 2048 \ - --max-batch-size 256 \ - --max-concurrent-requests 400 \ - --sharded true \ - --num-shard 8 + --max-input-length 1024 --max-total-tokens 2048 \ + --max-batch-prefill-tokens 2048 --max-batch-total-tokens 65536 \ + --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64 ``` -### LLama 70b FP8 on 8 Gaudi2 card +### Llama2-70B on 8 Cards ```bash model=meta-llama/Llama-2-70b-chat-hf -hf_token=YOUR_ACCESS_TOKEN # Llama2 is a gated model and requires a special access token +hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ @@ -241,73 +335,105 @@ docker run -p 8080:80 \ -v $volume:/data \ -v $PWD/quantization_config:/usr/src/quantization_config \ -v $PWD/hqt_output:/usr/src/hqt_output \ + -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ -e HABANA_VISIBLE_DEVICES=all \ - -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ - -e HF_HUB_ENABLE_HF_TRANSFER=1 \ -e HUGGING_FACE_HUB_TOKEN=$hf_token \ + -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ + -e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \ -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \ - -e PREFILL_BATCH_BUCKET_SIZE=1 \ + -e MAX_TOTAL_TOKENS=2048 \ -e BATCH_BUCKET_SIZE=256 \ - -e PAD_SEQUENCE_TO_MULTIPLE_OF=128 \ + -e PREFILL_BATCH_BUCKET_SIZE=4 \ + -e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \ -e ENABLE_HPU_GRAPH=true \ -e LIMIT_HPU_GRAPH=true \ -e USE_FLASH_ATTENTION=true \ -e FLASH_ATTENTION_RECOMPUTE=true \ - -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ --cap-add=sys_nice \ --ipc=host \ - ghcr.io/huggingface/tgi-gaudi:2.0.1 \ + ghcr.io/huggingface/tgi-gaudi:2.0.4 \ --model-id $model \ - --max-input-tokens 1024 \ - --max-batch-prefill-tokens 16384 \ - --max-total-tokens 2048 \ - --max-batch-size 256 \ - --max-concurrent-requests 400 \ - --sharded true \ - --num-shard 8 + --sharded true --num-shard 8 \ + --max-input-length 1024 --max-total-tokens 2048 \ + --max-batch-prefill-tokens 4096 --max-batch-total-tokens 524288 \ + --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512 ``` -### Llava-next -#### llava-v1.6-mistral-7b-hf BF16 on 1 Gaudi2 card -An image usually accounts for 2000 input tokens. For example, an image of size 512x512 is represented by 2800 tokens. Thus, `max-input-tokens` must be larger than the number of tokens associated to the image. Otherwise the image may be truncated. We set `BASE_IMAGE_TOKENS=2048` as the default image token number. This is the minimum value of `max-input-tokens`. You can override the environment variable `BASE_IMAGE_TOKENS` to change this value. The warmup will generate graphs with input length from `BASE_IMAGE_TOKENS` to `max-input-tokens`. For LLava-next 7B, the value of `max-batch-prefill-tokens` is 16384, which is calcualted as follows: `prefill_batch_size` = `max-batch-prefill-tokens` / `max-input-tokens`. +### Llama3.1-8B on 1 Card ```bash -model=llava-hf/llava-v1.6-mistral-7b-hf -hf_token=YOUR_ACCESS_TOKEN # HF access token +model=meta-llama/Meta-Llama-3.1-8B-Instruct +hf_token=YOUR_ACCESS_TOKEN volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ --runtime=habana \ -v $volume:/data \ + -v $PWD/quantization_config:/usr/src/quantization_config \ + -v $PWD/hqt_output:/usr/src/hqt_output \ + -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ -e HABANA_VISIBLE_DEVICES=all \ - -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ - -e HF_HUB_ENABLE_HF_TRANSFER=1 \ -e HUGGING_FACE_HUB_TOKEN=$hf_token \ + -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ + -e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \ + -e MAX_TOTAL_TOKENS=2048 \ + -e PREFILL_BATCH_BUCKET_SIZE=2 \ + -e BATCH_BUCKET_SIZE=32 \ + -e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \ + -e ENABLE_HPU_GRAPH=true \ + -e LIMIT_HPU_GRAPH=true \ + -e USE_FLASH_ATTENTION=true \ + -e FLASH_ATTENTION_RECOMPUTE=true \ --cap-add=sys_nice \ --ipc=host \ - ghcr.io/huggingface/tgi-gaudi:2.0.1 \ + ghcr.io/huggingface/tgi-gaudi:2.0.4 \ --model-id $model \ - --max-input-tokens 4096 \ - --max-batch-prefill-tokens 16384 \ - --max-total-tokens 8192 + --max-input-length 1024 --max-total-tokens 2048 \ + --max-batch-prefill-tokens 2048 --max-batch-total-tokens 65536 \ + --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64 ``` -Send the simple request. +### Llama3.1-70B on 8 cards + ```bash -curl -N 127.0.0.1:8080/generate_stream \ - -X POST \ - -d '{"inputs":"![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)What is this a picture of?\n\n","parameters":{"max_new_tokens":16, "seed": 42}}' \ - -H 'Content-Type: application/json' -``` +model=meta-llama/Meta-Llama-3.1-70B-Instruct +hf_token=YOUR_ACCESS_TOKEN +volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run -Multi-card Llava-next inference is currently not supported. +docker run -p 8080:80 \ + --runtime=habana \ + -v $volume:/data \ + -v $PWD/quantization_config:/usr/src/quantization_config \ + -v $PWD/hqt_output:/usr/src/hqt_output \ + -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ + -e HABANA_VISIBLE_DEVICES=all \ + -e HUGGING_FACE_HUB_TOKEN=$hf_token \ + -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ + -e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \ + -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \ + -e MAX_TOTAL_TOKENS=2048 \ + -e BATCH_BUCKET_SIZE=256 \ + -e PREFILL_BATCH_BUCKET_SIZE=4 \ + -e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \ + -e ENABLE_HPU_GRAPH=true \ + -e LIMIT_HPU_GRAPH=true \ + -e USE_FLASH_ATTENTION=true \ + -e FLASH_ATTENTION_RECOMPUTE=true \ + --cap-add=sys_nice \ + --ipc=host \ + ghcr.io/huggingface/tgi-gaudi:2.0.4 \ + --model-id $model \ + --sharded true --num-shard 8 \ + --max-input-length 1024 --max-total-tokens 2048 \ + --max-batch-prefill-tokens 4096 --max-batch-total-tokens 524288 \ + --max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512 +``` -#### llava-v1.6-mistral-7b-hf FP8 on 1 Gaudi2 card +### Llava-v1.6-Mistral-7B on 1 Card ```bash model=llava-hf/llava-v1.6-mistral-7b-hf -hf_token=YOUR_ACCESS_TOKEN # HF access token volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 \ @@ -315,28 +441,46 @@ docker run -p 8080:80 \ -v $volume:/data \ -v $PWD/quantization_config:/usr/src/quantization_config \ -v $PWD/hqt_output:/usr/src/hqt_output \ + -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ -e HABANA_VISIBLE_DEVICES=all \ -e OMPI_MCA_btl_vader_single_copy_mechanism=none \ -e HF_HUB_ENABLE_HF_TRANSFER=1 \ - -e HUGGING_FACE_HUB_TOKEN=$hf_token \ - -e QUANT_CONFIG=./quantization_config/maxabs_quant.json \ + -e ENABLE_HPU_GRAPH=true \ + -e LIMIT_HPU_GRAPH=true \ -e USE_FLASH_ATTENTION=true \ -e FLASH_ATTENTION_RECOMPUTE=true \ + -e PREFILL_BATCH_BUCKET_SIZE=1 \ + -e BATCH_BUCKET_SIZE=1 \ --cap-add=sys_nice \ --ipc=host \ - ghcr.io/huggingface/tgi-gaudi:2.0.1 \ + ghcr.io/huggingface/tgi-gaudi:2.0.4 \ --model-id $model \ - --max-input-tokens 4096 \ - --max-batch-prefill-tokens 16384 \ - --max-total-tokens 8192 + --max-input-tokens 4096 --max-batch-prefill-tokens 16384 \ + --max-total-tokens 8192 --max-batch-total-tokens 32768 ``` -Please note that the model warmup can take several minutes, especially for FP8 configs. To minimize this time in consecutive runs, please refer to [Disk Caching Eviction Policy](https://docs.habana.ai/en/latest/PyTorch/Model_Optimization_PyTorch/Optimization_in_PyTorch_Models.html#disk-caching-eviction-policy). +## Adjusting TGI Parameters -Other sequence lengths can be used with proportionally decreased/increased batch size (the higher sequence length, the lower batch size). -Support for other models from Optimum Habana will be added successively. +Maximum sequence length is controlled by two arguments: +- `--max-input-tokens` is the maximum possible input prompt length. Default value is `4095`. +- `--max-total-tokens` is the maximum possible total length of the sequence (input and output). Default value is `4096`. -## Environment variables +Maximum batch size is controlled by two arguments: +- For prefill operation, please set `--max-batch-prefill-tokens` as `bs * max-input-tokens`, where `bs` is your expected maximum prefill batch size. +- For decode operation, please set `--max-batch-total-tokens` as `bs * max-total-tokens`, where `bs` is your expected maximum decode batch size. +- Please note that batch size will be always padded to the nearest multiplication of `BATCH_BUCKET_SIZE` and `PREFILL_BATCH_BUCKET_SIZE`. + +To ensure greatest performance results, at the beginning of each server run, warmup is performed. It's designed to cover major recompilations while using HPU Graphs. It creates queries with all possible input shapes, based on provided parameters (described in this section) and runs basic TGI operations on them (prefill, decode, concatenate). + +Except those already mentioned, there are other parameters that need to be properly adjusted to improve performance or memory usage: + +- `PAD_SEQUENCE_TO_MULTIPLE_OF` determines sizes of input length buckets. Since warmup creates several graphs for each bucket, it's important to adjust that value proportionally to input sequence length. Otherwise, some out of memory issues can be observed. +- `ENABLE_HPU_GRAPH` enables HPU graphs usage, which is crucial for performance results. Recommended value to keep is `true` . + +For more information and documentation about Text Generation Inference, checkout [the README](https://github.com/huggingface/text-generation-inference#text-generation-inference) of the original repo. + + +## Environment Variables
@@ -372,7 +516,8 @@ To collect performance profiling, please set below environment variables:
+## License +The license to use TGI on Habana Gaudi is the one of TGI: https://github.com/huggingface/text-generation-inference/blob/main/LICENSE + +Please reach out to api-enterprise@huggingface.co if you have any question. -> The license to use TGI on Habana Gaudi is the one of TGI: https://github.com/huggingface/text-generation-inference/blob/main/LICENSE -> -> Please reach out to api-enterprise@huggingface.co if you have any question.