-
Notifications
You must be signed in to change notification settings - Fork 26.9k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
tests: fix pytorch tensor placement errors #33485
Conversation
This ci failure does not seem to be relevant, I did not touch this part of the code:
|
Hi @dvrogozh, thanks for opening a PR! Could you provide some more context around this issue, specifically linking to a related github issue or providing a minimal reproducible code snippet for the error? |
@amyeroberts : see: |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks for fixing!
For the failing examples tests - I believe this has been fixed upstream. Could you rebase on main -- this should make everything green and ready to merge :) |
d7cb2c3
to
917f136
Compare
Rebased. It seems there are still some issues running tests from main branch.
|
Considering that we did not see these tests on my prev. merge base, that's regression. Indeed:
First bad commit 78b2929, after merge of: Filed: to track this. @avishaiElmakies : fyi. |
Hm. I reproduced this issue on main without my PR. But I could not find a revision in history which works. I still see same error. I wonder, was one of the packages we depend upon updated behind the scenes so this test got affected? Filed #33650 to track. |
Ok, waiting once this will get resolved on infrastructure side... |
This commit fixes the following errors: * Fix "expected all tensors to be on the same device" error * Fix "can't convert device type tensor to numpy" According to pytorch documentation torch.Tensor.numpy(force=False) performs conversion only if tensor is on CPU (plus few other restrictions) which is not the case. For our case we need force=True since we just need a data and don't care about tensors coherency. Fixes: huggingface#33517 See: https://pytorch.org/docs/2.4/generated/torch.Tensor.numpy.html Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
@amyeroberts : ci passed now. No changes in PR, just rebasing to get fixes from main branch. |
@dvrogozh Great, thanks for updating! |
This commit fixes the following errors: * Fix "expected all tensors to be on the same device" error * Fix "can't convert device type tensor to numpy" According to pytorch documentation torch.Tensor.numpy(force=False) performs conversion only if tensor is on CPU (plus few other restrictions) which is not the case. For our case we need force=True since we just need a data and don't care about tensors coherency. Fixes: huggingface#33517 See: https://pytorch.org/docs/2.4/generated/torch.Tensor.numpy.html Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
This commit fixes the following errors: * Fix "expected all tensors to be on the same device" error * Fix "can't convert device type tensor to numpy" According to pytorch documentation torch.Tensor.numpy(force=False) performs conversion only if tensor is on CPU (plus few other restrictions) which is not the case. For our case we need force=True since we just need a data and don't care about tensors coherency. Fixes: huggingface#33517 See: https://pytorch.org/docs/2.4/generated/torch.Tensor.numpy.html Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* add sdpa to OPT * chore: remove redundant whitespace in OPTDecoder class * fixup * bug fix * add sdpa and attention generate test * fixup * Refactor OPTAttention forward method for improved readability and maintainability * undo refactor for _shape and key,val states * add OPT to doc, fixup didn't find it for some reason * change order * change default attn_implemntation in testing to eager * [run-slow] opt * change test_eager_matches_sdpa_generate to the one llama * Update default attention implementation in testing common * [run-slow] opt * remove uneeded print * [run-slow] opt * refactor model testers to have attn_implementation="eager" * [run-slow] opt * convert test_eager_matches_sdpa_generate to opt-350M * bug fix when creating mask for opt * [run-slow] opt * if layer head mask default to eager * if head mask is not none fall to eager * [run-slow] opt * Update src/transformers/models/opt/modeling_opt.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Clean up Unpack imports (#33631) clean up Unpack imports * Fix DPT /Dinov2 sdpa regression on main (#33660) * fallback to eager if output attentions. * fix copies * handle dependency errors in check_imports (#33622) * handle dependency errors in check_imports * change log level to warning * add back self.max_position_embeddings = config.max_position_embeddings (#33550) * add back self.max_position_embeddings = config.max_position_embeddings * fix-copies * Fix Llava conversion for LlavaQwen2ForCausalLM with Clip vision tower (#33613) fix llavaqwen2 model conversion * Uniformize kwargs for Udop processor and update docs (#33628) * Add optional kwargs and uniformize udop * cleanup Unpack * nit Udop * Generation: deprecate `PreTrainedModel` inheriting from `GenerationMixin` (#33203) * Enable BNB multi-backend support (#31098) * enable cpu bnb path * fix style * fix code style * fix 4 bit path * Update src/transformers/utils/import_utils.py Co-authored-by: Aarni Koskela <akx@iki.fi> * add multi backend refactor tests * fix style * tweak 4bit quantizer + fix corresponding tests * tweak 8bit quantizer + *try* fixing corresponding tests * fix dequant bnb 8bit * account for Intel CPU in variability of expected outputs * enable cpu and xpu device map * further tweaks to account for Intel CPU * fix autocast to work with both cpu + cuda * fix comments * fix comments * switch to testing_utils.torch_device * allow for xpu in multi-gpu tests * fix tests 4bit for CPU NF4 * fix bug with is_torch_xpu_available needing to be called as func * avoid issue where test reports attr err due to other failure * fix formatting * fix typo from resolving of merge conflict * polish based on last PR review Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * fix CI * Update src/transformers/integrations/integration_utils.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/integrations/integration_utils.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix error log * fix error msg * add \n in error log * make quality * rm bnb cuda restriction in doc * cpu model don't need dispatch * fix doc * fix style * check cuda avaliable in testing * fix tests * Update docs/source/en/model_doc/chameleon.md Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update docs/source/en/model_doc/llava_next.md Co-authored-by: Aarni Koskela <akx@iki.fi> * Update tests/quantization/bnb/test_4bit.py Co-authored-by: Aarni Koskela <akx@iki.fi> * Update tests/quantization/bnb/test_4bit.py Co-authored-by: Aarni Koskela <akx@iki.fi> * fix doc * fix check multibackends * fix import sort * remove check torch in bnb * docs: update bitsandbytes references with multi-backend info * docs: fix small mistakes in bnb paragraph * run formatting * reveret bnb check * move bnb multi-backend check to import_utils * Update src/transformers/utils/import_utils.py Co-authored-by: Aarni Koskela <akx@iki.fi> * fix bnb check * minor fix for bnb * check lib first * fix code style * Revert "run formatting" This reverts commit ac108c6. * fix format * give warning when bnb version is low and no cuda found] * fix device assignment check to be multi-device capable * address akx feedback on get_avlbl_dev fn * revert partially, as we don't want the function that public, as docs would be too much (enforced) --------- Co-authored-by: Aarni Koskela <akx@iki.fi> Co-authored-by: Titus von Koeller <9048635+Titus-von-Koeller@users.noreply.github.com> Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Fix error string after refactoring into get_chat_template (#33652) * Fix error string after refactoring into get_chat_template * Take suggestion from CR Co-authored-by: Matt <Rocketknight1@users.noreply.github.com> --------- Co-authored-by: Matt <Rocketknight1@users.noreply.github.com> * uniformize git processor (#33668) * uniformize git processor * update doctring * Modular `transformers`: modularity and inheritance for new model additions (#33248) * update exampel * update * push the converted diff files for testing and ci * correct one example * fix class attributes and docstring * nits * oups * fixed config! * update * nitd * class attributes are not matched against the other, this is missing * fixed overwriting self.xxx now onto the attributes I think * partial fix, now order with docstring * fix docstring order? * more fixes * update * fix missing docstrings! * examples don't all work yet * fixup * nit * updated * hick * update * delete * update * update * update * fix * all default * no local import * fix more diff * some fix related to "safe imports" * push fixed * add helper! * style * add a check * all by default * add the * update * FINALLY! * nit * fix config dependencies * man that is it * fix fix * update diffs * fix the last issue * re-default to all * alll the fixes * nice * fix properties vs setter * fixup * updates * update dependencies * make sure to install what needs to be installed * fixup * quick fix for now * fix! * fixup * update * update * updates * whitespaces * nit * fix * simplify everything, and make it file agnostic (should work for image processors) * style * finish fixing all import issues * fixup * empty modeling should not be written! * Add logic to find who depends on what * update * cleanup * update * update gemma to support positions * some small nits * this is the correct docstring for gemma2 * fix merging of docstrings * update * fixup * update * take doc into account * styling * update * fix hidden activation * more fixes * final fixes! * fixup * fixup instruct blip video * update * fix bugs * align gemma2 with the rest as well * updats * revert * update * more reversiom * grind * more * arf * update * order will matter * finish del stuff * update * rename to modular * fixup * nits * update makefile * fixup * update order of the checks! * fix * fix docstring that has a call inside * fiix conversion check * style * add some initial documentation * update * update doc * some fixup * updates * yups * Mostly todo gimme a minut * update * fixup * revert some stuff * Review docs for the modular transformers (#33472) Docs * good update * fixup * mmm current updates lead to this code * okay, this fixes it * cool * fixes * update * nit * updates * nits * fix doc * update * revert bad changes * update * updates * proper update * update * update? * up * update * cool * nits * nits * bon bon * fix * ? * minimise changes * update * update * update * updates? * fixed gemma2 * kind of a hack * nits * update * remove `diffs` in favor of `modular` * fix make fix copies --------- Co-authored-by: Lysandre Debut <hi@lysand.re> * Fix CIs post merging modular transformers (#33681) update * Fixed docstring for cohere model regarding unavailability of prune_he… (#33253) * Fixed docstring for cohere model regarding unavailability of prune_head() methods The docstring mentions that cohere model supports prune_heads() methods. I have fixed the docstring by explicitly mentioning that it doesn't support that functionality. * Update src/transformers/models/cohere/modeling_cohere.py --------- Co-authored-by: Lysandre Debut <hi@lysand.re> * Generation tests: update imagegpt input name, remove unused functions (#33663) * Improve Error Messaging for Flash Attention 2 on CPU (#33655) Update flash-attn error message on CPU Rebased to latest branch * Gemma2: fix config initialization (`cache_implementation`) (#33684) * Fix ByteLevel alphabet missing when Sequence pretokenizer is used (#33556) * Fix ByteLevel alphabet missing when Sequence pretokenizer is used * Fixed formatting with `ruff`. * Uniformize kwargs for image-text-to-text processors (#32544) * uniformize FUYU processor kwargs * Uniformize instructblip processor kwargs * Fix processor kwargs and tests Fuyu, InstructBlip, Kosmos2 * Uniformize llava_next processor * Fix save_load test for processor with chat_template only as extra init args * Fix import Unpack * Fix Fuyu Processor import * Fix FuyuProcessor import * Fix FuyuProcessor * Add defaults for specific kwargs kosmos2 * Fix Udop to return BatchFeature instead of BatchEncoding and uniformize kwargs * Add tests processor Udop * remove Copied from in processing Udop as change of input orders caused by BatchEncoding -> BatchFeature * Fix overwrite tests kwargs processors * Add warnings and BC for changes in processor inputs order, change docs, add BC for text_pair as arg for Udop * Fix processing test fuyu * remove unnecessary pad_token check in instructblip ProcessorTest * Fix BC tests and cleanup * FIx imports fuyu * Uniformize Pix2Struct * Fix wrong name for FuyuProcessorKwargs * Fix slow tests reversed inputs align fuyu llava-next, change udop warning * Fix wrong logging import udop * Add check images text input order * Fix copies * change text pair handling when positional arg * rebase on main, fix imports in test_processing_common * remove optional args and udop uniformization from this PR * fix failing tests * remove unnecessary test, fix processing utils and test processing common * cleanup Unpack * cleanup * fix conflict grounding dino * 🚨🚨 Setting default behavior of assisted decoding (#33657) * tests: fix pytorch tensor placement errors (#33485) This commit fixes the following errors: * Fix "expected all tensors to be on the same device" error * Fix "can't convert device type tensor to numpy" According to pytorch documentation torch.Tensor.numpy(force=False) performs conversion only if tensor is on CPU (plus few other restrictions) which is not the case. For our case we need force=True since we just need a data and don't care about tensors coherency. Fixes: #33517 See: https://pytorch.org/docs/2.4/generated/torch.Tensor.numpy.html Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com> * bump tokenizers, fix added tokens fast (#32535) * update based on tokenizers release * update * nits * update * revert re addition * don't break that yet * fmt * revert unwanted * update tokenizers version * update dep table * update * update in conversion script as well * some fix * revert * fully revert * fix training * remove set trace * fixup * update * update * [Pixtral] Improve docs, rename model (#33491) * Improve docs, rename model * Fix style * Update repo id * fix code quality after merge * HFQuantizer implementation for compressed-tensors library (#31704) * Add compressed-tensors HFQuantizer implementation * flag serializable as False * run * revive lines deleted by ruff * fixes to load+save from sparseml, edit config to quantization_config, and load back * address satrat comment * compressed_tensors to compressed-tensors and revert back is_serializable * rename quant_method from sparseml to compressed-tensors * tests * edit tests * clean up tests * make style * cleanup * cleanup * add test skip for when compressed tensors is not installed * remove pydantic import + style * delay torch import in test * initial docs * update main init for compressed tensors config * make fix-copies * docstring * remove fill_docstring * Apply suggestions from code review Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * review comments * review comments * comments - suppress warnings on state dict load, tests, fixes * bug-fix - remove unnecessary call to apply quant lifecycle * run_compressed compatability * revert changes not needed for compression * no longer need unexpected keys fn * unexpected keys not needed either * Apply suggestions from code review Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * add to_diff_dict * update docs and expand testing * Update _toctree.yml with compressed-tensors * Update src/transformers/utils/quantization_config.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * update doc * add note about saving a loaded model --------- Co-authored-by: George Ohashi <george@neuralmagic.com> Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> Co-authored-by: Sara Adkins <sara@neuralmagic.com> Co-authored-by: Sara Adkins <sara.adkins65@gmail.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Dipika Sikka <ds3822@columbia.edu> Co-authored-by: Dipika <dipikasikka1@gmail.com> * update model card for opt * add batch size to inference table * [slow-run] opt * [run-slow] opt --------- Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com> Co-authored-by: Avishai Elmakies <avishai.elma@cs.huji.ac.il> Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com> Co-authored-by: chengchengpei <5881383+chengchengpei@users.noreply.github.com> Co-authored-by: Isotr0py <2037008807@qq.com> Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com> Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com> Co-authored-by: jiqing-feng <jiqing.feng@intel.com> Co-authored-by: Aarni Koskela <akx@iki.fi> Co-authored-by: Titus von Koeller <9048635+Titus-von-Koeller@users.noreply.github.com> Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Tibor Reiss <75096465+tibor-reiss@users.noreply.github.com> Co-authored-by: Matt <Rocketknight1@users.noreply.github.com> Co-authored-by: Lysandre Debut <hi@lysand.re> Co-authored-by: Muhammad Naufil <m.naufil1@gmail.com> Co-authored-by: sizhky <yyeshr@gmail.com> Co-authored-by: Umar Butler <umar@umar.au> Co-authored-by: Jonathan Mamou <jonathan.mamou@intel.com> Co-authored-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com> Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com> Co-authored-by: Benjamin Fineran <bfineran@users.noreply.github.com> Co-authored-by: George Ohashi <george@neuralmagic.com> Co-authored-by: Sara Adkins <sara@neuralmagic.com> Co-authored-by: Sara Adkins <sara.adkins65@gmail.com> Co-authored-by: Dipika Sikka <ds3822@columbia.edu> Co-authored-by: Dipika <dipikasikka1@gmail.com>
* add sdpa to OPT * chore: remove redundant whitespace in OPTDecoder class * fixup * bug fix * add sdpa and attention generate test * fixup * Refactor OPTAttention forward method for improved readability and maintainability * undo refactor for _shape and key,val states * add OPT to doc, fixup didn't find it for some reason * change order * change default attn_implemntation in testing to eager * [run-slow] opt * change test_eager_matches_sdpa_generate to the one llama * Update default attention implementation in testing common * [run-slow] opt * remove uneeded print * [run-slow] opt * refactor model testers to have attn_implementation="eager" * [run-slow] opt * convert test_eager_matches_sdpa_generate to opt-350M * bug fix when creating mask for opt * [run-slow] opt * if layer head mask default to eager * if head mask is not none fall to eager * [run-slow] opt * Update src/transformers/models/opt/modeling_opt.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Clean up Unpack imports (huggingface#33631) clean up Unpack imports * Fix DPT /Dinov2 sdpa regression on main (huggingface#33660) * fallback to eager if output attentions. * fix copies * handle dependency errors in check_imports (huggingface#33622) * handle dependency errors in check_imports * change log level to warning * add back self.max_position_embeddings = config.max_position_embeddings (huggingface#33550) * add back self.max_position_embeddings = config.max_position_embeddings * fix-copies * Fix Llava conversion for LlavaQwen2ForCausalLM with Clip vision tower (huggingface#33613) fix llavaqwen2 model conversion * Uniformize kwargs for Udop processor and update docs (huggingface#33628) * Add optional kwargs and uniformize udop * cleanup Unpack * nit Udop * Generation: deprecate `PreTrainedModel` inheriting from `GenerationMixin` (huggingface#33203) * Enable BNB multi-backend support (huggingface#31098) * enable cpu bnb path * fix style * fix code style * fix 4 bit path * Update src/transformers/utils/import_utils.py Co-authored-by: Aarni Koskela <akx@iki.fi> * add multi backend refactor tests * fix style * tweak 4bit quantizer + fix corresponding tests * tweak 8bit quantizer + *try* fixing corresponding tests * fix dequant bnb 8bit * account for Intel CPU in variability of expected outputs * enable cpu and xpu device map * further tweaks to account for Intel CPU * fix autocast to work with both cpu + cuda * fix comments * fix comments * switch to testing_utils.torch_device * allow for xpu in multi-gpu tests * fix tests 4bit for CPU NF4 * fix bug with is_torch_xpu_available needing to be called as func * avoid issue where test reports attr err due to other failure * fix formatting * fix typo from resolving of merge conflict * polish based on last PR review Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * fix CI * Update src/transformers/integrations/integration_utils.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/integrations/integration_utils.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix error log * fix error msg * add \n in error log * make quality * rm bnb cuda restriction in doc * cpu model don't need dispatch * fix doc * fix style * check cuda avaliable in testing * fix tests * Update docs/source/en/model_doc/chameleon.md Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update docs/source/en/model_doc/llava_next.md Co-authored-by: Aarni Koskela <akx@iki.fi> * Update tests/quantization/bnb/test_4bit.py Co-authored-by: Aarni Koskela <akx@iki.fi> * Update tests/quantization/bnb/test_4bit.py Co-authored-by: Aarni Koskela <akx@iki.fi> * fix doc * fix check multibackends * fix import sort * remove check torch in bnb * docs: update bitsandbytes references with multi-backend info * docs: fix small mistakes in bnb paragraph * run formatting * reveret bnb check * move bnb multi-backend check to import_utils * Update src/transformers/utils/import_utils.py Co-authored-by: Aarni Koskela <akx@iki.fi> * fix bnb check * minor fix for bnb * check lib first * fix code style * Revert "run formatting" This reverts commit ac108c6. * fix format * give warning when bnb version is low and no cuda found] * fix device assignment check to be multi-device capable * address akx feedback on get_avlbl_dev fn * revert partially, as we don't want the function that public, as docs would be too much (enforced) --------- Co-authored-by: Aarni Koskela <akx@iki.fi> Co-authored-by: Titus von Koeller <9048635+Titus-von-Koeller@users.noreply.github.com> Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Fix error string after refactoring into get_chat_template (huggingface#33652) * Fix error string after refactoring into get_chat_template * Take suggestion from CR Co-authored-by: Matt <Rocketknight1@users.noreply.github.com> --------- Co-authored-by: Matt <Rocketknight1@users.noreply.github.com> * uniformize git processor (huggingface#33668) * uniformize git processor * update doctring * Modular `transformers`: modularity and inheritance for new model additions (huggingface#33248) * update exampel * update * push the converted diff files for testing and ci * correct one example * fix class attributes and docstring * nits * oups * fixed config! * update * nitd * class attributes are not matched against the other, this is missing * fixed overwriting self.xxx now onto the attributes I think * partial fix, now order with docstring * fix docstring order? * more fixes * update * fix missing docstrings! * examples don't all work yet * fixup * nit * updated * hick * update * delete * update * update * update * fix * all default * no local import * fix more diff * some fix related to "safe imports" * push fixed * add helper! * style * add a check * all by default * add the * update * FINALLY! * nit * fix config dependencies * man that is it * fix fix * update diffs * fix the last issue * re-default to all * alll the fixes * nice * fix properties vs setter * fixup * updates * update dependencies * make sure to install what needs to be installed * fixup * quick fix for now * fix! * fixup * update * update * updates * whitespaces * nit * fix * simplify everything, and make it file agnostic (should work for image processors) * style * finish fixing all import issues * fixup * empty modeling should not be written! * Add logic to find who depends on what * update * cleanup * update * update gemma to support positions * some small nits * this is the correct docstring for gemma2 * fix merging of docstrings * update * fixup * update * take doc into account * styling * update * fix hidden activation * more fixes * final fixes! * fixup * fixup instruct blip video * update * fix bugs * align gemma2 with the rest as well * updats * revert * update * more reversiom * grind * more * arf * update * order will matter * finish del stuff * update * rename to modular * fixup * nits * update makefile * fixup * update order of the checks! * fix * fix docstring that has a call inside * fiix conversion check * style * add some initial documentation * update * update doc * some fixup * updates * yups * Mostly todo gimme a minut * update * fixup * revert some stuff * Review docs for the modular transformers (huggingface#33472) Docs * good update * fixup * mmm current updates lead to this code * okay, this fixes it * cool * fixes * update * nit * updates * nits * fix doc * update * revert bad changes * update * updates * proper update * update * update? * up * update * cool * nits * nits * bon bon * fix * ? * minimise changes * update * update * update * updates? * fixed gemma2 * kind of a hack * nits * update * remove `diffs` in favor of `modular` * fix make fix copies --------- Co-authored-by: Lysandre Debut <hi@lysand.re> * Fix CIs post merging modular transformers (huggingface#33681) update * Fixed docstring for cohere model regarding unavailability of prune_he… (huggingface#33253) * Fixed docstring for cohere model regarding unavailability of prune_head() methods The docstring mentions that cohere model supports prune_heads() methods. I have fixed the docstring by explicitly mentioning that it doesn't support that functionality. * Update src/transformers/models/cohere/modeling_cohere.py --------- Co-authored-by: Lysandre Debut <hi@lysand.re> * Generation tests: update imagegpt input name, remove unused functions (huggingface#33663) * Improve Error Messaging for Flash Attention 2 on CPU (huggingface#33655) Update flash-attn error message on CPU Rebased to latest branch * Gemma2: fix config initialization (`cache_implementation`) (huggingface#33684) * Fix ByteLevel alphabet missing when Sequence pretokenizer is used (huggingface#33556) * Fix ByteLevel alphabet missing when Sequence pretokenizer is used * Fixed formatting with `ruff`. * Uniformize kwargs for image-text-to-text processors (huggingface#32544) * uniformize FUYU processor kwargs * Uniformize instructblip processor kwargs * Fix processor kwargs and tests Fuyu, InstructBlip, Kosmos2 * Uniformize llava_next processor * Fix save_load test for processor with chat_template only as extra init args * Fix import Unpack * Fix Fuyu Processor import * Fix FuyuProcessor import * Fix FuyuProcessor * Add defaults for specific kwargs kosmos2 * Fix Udop to return BatchFeature instead of BatchEncoding and uniformize kwargs * Add tests processor Udop * remove Copied from in processing Udop as change of input orders caused by BatchEncoding -> BatchFeature * Fix overwrite tests kwargs processors * Add warnings and BC for changes in processor inputs order, change docs, add BC for text_pair as arg for Udop * Fix processing test fuyu * remove unnecessary pad_token check in instructblip ProcessorTest * Fix BC tests and cleanup * FIx imports fuyu * Uniformize Pix2Struct * Fix wrong name for FuyuProcessorKwargs * Fix slow tests reversed inputs align fuyu llava-next, change udop warning * Fix wrong logging import udop * Add check images text input order * Fix copies * change text pair handling when positional arg * rebase on main, fix imports in test_processing_common * remove optional args and udop uniformization from this PR * fix failing tests * remove unnecessary test, fix processing utils and test processing common * cleanup Unpack * cleanup * fix conflict grounding dino * 🚨🚨 Setting default behavior of assisted decoding (huggingface#33657) * tests: fix pytorch tensor placement errors (huggingface#33485) This commit fixes the following errors: * Fix "expected all tensors to be on the same device" error * Fix "can't convert device type tensor to numpy" According to pytorch documentation torch.Tensor.numpy(force=False) performs conversion only if tensor is on CPU (plus few other restrictions) which is not the case. For our case we need force=True since we just need a data and don't care about tensors coherency. Fixes: huggingface#33517 See: https://pytorch.org/docs/2.4/generated/torch.Tensor.numpy.html Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com> * bump tokenizers, fix added tokens fast (huggingface#32535) * update based on tokenizers release * update * nits * update * revert re addition * don't break that yet * fmt * revert unwanted * update tokenizers version * update dep table * update * update in conversion script as well * some fix * revert * fully revert * fix training * remove set trace * fixup * update * update * [Pixtral] Improve docs, rename model (huggingface#33491) * Improve docs, rename model * Fix style * Update repo id * fix code quality after merge * HFQuantizer implementation for compressed-tensors library (huggingface#31704) * Add compressed-tensors HFQuantizer implementation * flag serializable as False * run * revive lines deleted by ruff * fixes to load+save from sparseml, edit config to quantization_config, and load back * address satrat comment * compressed_tensors to compressed-tensors and revert back is_serializable * rename quant_method from sparseml to compressed-tensors * tests * edit tests * clean up tests * make style * cleanup * cleanup * add test skip for when compressed tensors is not installed * remove pydantic import + style * delay torch import in test * initial docs * update main init for compressed tensors config * make fix-copies * docstring * remove fill_docstring * Apply suggestions from code review Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * review comments * review comments * comments - suppress warnings on state dict load, tests, fixes * bug-fix - remove unnecessary call to apply quant lifecycle * run_compressed compatability * revert changes not needed for compression * no longer need unexpected keys fn * unexpected keys not needed either * Apply suggestions from code review Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * add to_diff_dict * update docs and expand testing * Update _toctree.yml with compressed-tensors * Update src/transformers/utils/quantization_config.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * update doc * add note about saving a loaded model --------- Co-authored-by: George Ohashi <george@neuralmagic.com> Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> Co-authored-by: Sara Adkins <sara@neuralmagic.com> Co-authored-by: Sara Adkins <sara.adkins65@gmail.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Dipika Sikka <ds3822@columbia.edu> Co-authored-by: Dipika <dipikasikka1@gmail.com> * update model card for opt * add batch size to inference table * [slow-run] opt * [run-slow] opt --------- Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com> Co-authored-by: Avishai Elmakies <avishai.elma@cs.huji.ac.il> Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com> Co-authored-by: chengchengpei <5881383+chengchengpei@users.noreply.github.com> Co-authored-by: Isotr0py <2037008807@qq.com> Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com> Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com> Co-authored-by: jiqing-feng <jiqing.feng@intel.com> Co-authored-by: Aarni Koskela <akx@iki.fi> Co-authored-by: Titus von Koeller <9048635+Titus-von-Koeller@users.noreply.github.com> Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Tibor Reiss <75096465+tibor-reiss@users.noreply.github.com> Co-authored-by: Matt <Rocketknight1@users.noreply.github.com> Co-authored-by: Lysandre Debut <hi@lysand.re> Co-authored-by: Muhammad Naufil <m.naufil1@gmail.com> Co-authored-by: sizhky <yyeshr@gmail.com> Co-authored-by: Umar Butler <umar@umar.au> Co-authored-by: Jonathan Mamou <jonathan.mamou@intel.com> Co-authored-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com> Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com> Co-authored-by: Benjamin Fineran <bfineran@users.noreply.github.com> Co-authored-by: George Ohashi <george@neuralmagic.com> Co-authored-by: Sara Adkins <sara@neuralmagic.com> Co-authored-by: Sara Adkins <sara.adkins65@gmail.com> Co-authored-by: Dipika Sikka <ds3822@columbia.edu> Co-authored-by: Dipika <dipikasikka1@gmail.com>
This commit fixes the following errors:
And few other variants of above where model or inputs are not on the right device.
According to pytorch documentation torch.Tensor.numpy(force=False) performs conversion only if tensor is on CPU (plus few other restrictions) which is not the case. For our case we need force=True since we just need a data and don't care about tensors coherency.
Fixes: #33517
See: https://pytorch.org/docs/2.4/generated/torch.Tensor.numpy.html
CC: @sanchit-gandhi, @amyeroberts