forked from py-why/EconML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.cfg
94 lines (87 loc) · 1.97 KB
/
setup.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
[pycodestyle]
ignore=E402,W504
max-line-length=119
[pydocstyle]
; Use numpy style
convention=numpy
[metadata]
name = econml
author = Microsoft Corporation
description = This package contains several methods for calculating Conditional Average Treatment Effects
long_description = file: README.md
long_description_content_type = text/markdown
license = MIT
keywords = treatment-effect
url = https://github.com/Microsoft/EconML
project_urls =
Bug Tracker=https://github.com/Microsoft/EconML/Issues
Source Code=https://github.com/Microsoft/EconML
Documentation=https://econml.azurewebsites.net/
classifiers =
Programming Language :: Python :: 3.6
Programming Language :: Python :: 3.7
Programming Language :: Python :: 3.8
License :: OSI Approved :: MIT License
Operating System :: MacOS
Operating System :: Microsoft :: Windows
Operating System :: POSIX :: Linux
[options]
packages = find_namespace:
install_requires =
numpy
scipy > 1.4.0
scikit-learn > 0.22.0
sparse
joblib >= 0.13.0
numba != 0.42.1
statsmodels >= 0.10
pandas
shap >= 0.38.1, < 0.40.0
dowhy
# lightgbm
test_suite = econml.tests
tests_require =
pytest
pytest-xdist < 2.0.0
pytest-cov
jupyter
nbconvert < 6
nbformat
seaborn
xgboost
tqdm
jupyter-client <= 6.1.12
[options.extras_require]
automl =
; Disabled due to incompatibility with scikit-learn
; azureml-sdk[explain,automl] == 1.0.83
azure-cli
tf =
keras < 2.4
tensorflow > 1.10, < 2.3
plt =
graphviz
matplotlib
all =
azure-cli
keras < 2.4
tensorflow > 1.10, < 2.3
matplotlib
[options.packages.find]
include =
econml
econml.*
exclude =
econml.tests
[options.package_data]
; include all CSV files as data
* = *.csv
*.jbl
; coverage configuration
[coverage:run]
omit = econml/tests/*
branch = True
; need to explicitly add support for multiprocessing for OrthoForest
concurrency =
thread
multiprocessing