-
Notifications
You must be signed in to change notification settings - Fork 0
/
exp2.aa
19 lines (18 loc) · 1.12 KB
/
exp2.aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
*import exp
*import exp1
*import sum
*func E
*var n
specify(exp.T2): \Aa: E(a, 2) = n(1 + 2^{-a}) + 2^{-a} \sum_{i=1}^a{ 2^{i} E(i, 1) / 2 }
equate(exp1.Exp_a_1): \Aa: E(a, 2) = n(1 + 2^{-a}) + 2^{-a} \sum_{i=1}^a{ 2^{i} n(i + 2^{-i}) / 2 }
factor: \Aa: E(a, 2) = n(1 + 2^{-a}) + n 2^{-a} \sum_{i=1}^a{ 2^{i} (i + 2^{-i}) / 2 }
factor: \Aa: E(a, 2) = n(1 + 2^{-a}) + (n / 2) 2^{-a} \sum_{i=1}^a{ 2^{i} (i + 2^{-i}) }
distrib: \Aa: E(a, 2) = n(1 + 2^{-a}) + (n / 2) 2^{-a} \sum_{i=1}^a{ 2^{i} i + 1 }
unarydistrib: \Aa: E(a, 2) = n(1 + 2^{-a}) + (n / 2) 2^{-a} (\sum_{i=1}^a{ 2^{i} i } + \sum_{i=1}^a{ 1 })
equate(sum.Sum_pow_2_i): \Aa: E(a, 2) = n(1 + 2^{-a}) + (n / 2) 2^{-a} (2^{a + 1} (a - 1) + 2 + \sum_{i=1}^a{ 1 })
equate(sum.Sum_const): \Aa: E(a, 2) = n(1 + 2^{-a}) + (n / 2) 2^{-a} (2^{a + 1} (a - 1) + 2 + a)
factor: \Aa: E(a, 2) = n(1 + 2^{-a} + (1 / 2) 2^{-a} (2^{a + 1} (a - 1) + 2 + a))
distrib: \Aa: E(a, 2) = n(1 + 2^{-a} + (1 / 2) (2(a - 1) + (2 + a) 2^{-a}))
distrib: \Aa: E(a, 2) = n(a + 2^{-a} + (2 + a) 2^{-a} / 2)
factor: \Aa: E(a, 2) = n(a + 2^{-a} (a + 4) / 2)
theorem Exp_a_2: \Aa: E(a, 2) = n(a + 2^{-a} (a + 4) / 2)