forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
smart_module.py
226 lines (175 loc) · 7.7 KB
/
smart_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Smart module export/import utilities."""
import inspect
import pickle
import tensorflow.compat.v1 as tf
from tensorflow.compat.v1.io import gfile
import tensorflow_hub as hub
import tree as nest
import wrapt
_ALLOWED_TYPES = (bool, float, int, str)
def _getcallargs(signature, *args, **kwargs):
bound_args = signature.bind(*args, **kwargs)
bound_args.apply_defaults()
inputs = bound_args.arguments
inputs.pop("self", None)
return inputs
def _to_placeholder(arg):
if arg is None or isinstance(arg, bool):
return arg
arg = tf.convert_to_tensor(arg)
return tf.placeholder(dtype=arg.dtype, shape=arg.shape)
class SmartModuleExport(object):
"""Helper class for exporting TF-Hub modules."""
def __init__(self, object_factory):
self._object_factory = object_factory
self._wrapped_object = self._object_factory()
self._variable_scope = tf.get_variable_scope()
self._captured_calls = {}
self._captured_attrs = {}
def _create_captured_method(self, method_name):
"""Creates a wrapped method that captures its inputs."""
with tf.variable_scope(self._variable_scope):
method_ = getattr(self._wrapped_object, method_name)
@wrapt.decorator
def wrapper(method, instance, args, kwargs):
"""Wrapped method to capture inputs."""
del instance
specs = inspect.signature(method)
inputs = _getcallargs(specs, *args, **kwargs)
with tf.variable_scope(self._variable_scope):
output = method(*args, **kwargs)
self._captured_calls[method_name] = [inputs, specs]
return output
return wrapper(method_) # pylint: disable=no-value-for-parameter
def __getattr__(self, name):
"""Helper method for accessing an attributes of the wrapped object."""
# if "_wrapped_object" not in self.__dict__:
# return super(ExportableModule, self).__getattr__(name)
with tf.variable_scope(self._variable_scope):
attr = getattr(self._wrapped_object, name)
if inspect.ismethod(attr) or inspect.isfunction(attr):
return self._create_captured_method(name)
else:
if all([isinstance(v, _ALLOWED_TYPES) for v in nest.flatten(attr)]):
self._captured_attrs[name] = attr
return attr
def __call__(self, *args, **kwargs):
return self._create_captured_method("__call__")(*args, **kwargs)
def export(self, path, session, overwrite=False):
"""Build the TF-Hub spec, module and sync ops."""
method_specs = {}
def module_fn():
"""A module_fn for use with hub.create_module_spec()."""
# We will use a copy of the original object to build the graph.
wrapped_object = self._object_factory()
for method_name, method_info in self._captured_calls.items():
captured_inputs, captured_specs = method_info
tensor_inputs = nest.map_structure(_to_placeholder, captured_inputs)
method_to_call = getattr(wrapped_object, method_name)
tensor_outputs = method_to_call(**tensor_inputs)
flat_tensor_inputs = nest.flatten(tensor_inputs)
flat_tensor_inputs = {
str(k): v for k, v in zip(
range(len(flat_tensor_inputs)), flat_tensor_inputs)
}
flat_tensor_outputs = nest.flatten(tensor_outputs)
flat_tensor_outputs = {
str(k): v for k, v in zip(
range(len(flat_tensor_outputs)), flat_tensor_outputs)
}
method_specs[method_name] = dict(
specs=captured_specs,
inputs=nest.map_structure(lambda _: None, tensor_inputs),
outputs=nest.map_structure(lambda _: None, tensor_outputs))
signature_name = ("default"
if method_name == "__call__" else method_name)
hub.add_signature(signature_name, flat_tensor_inputs,
flat_tensor_outputs)
hub.attach_message(
"methods", tf.train.BytesList(value=[pickle.dumps(method_specs)]))
hub.attach_message(
"properties",
tf.train.BytesList(value=[pickle.dumps(self._captured_attrs)]))
# Create the spec that will be later used in export.
hub_spec = hub.create_module_spec(module_fn, drop_collections=["sonnet"])
# Get variables values
module_weights = [
session.run(v) for v in self._wrapped_object.get_all_variables()
]
# create the sync ops
with tf.Graph().as_default():
hub_module = hub.Module(hub_spec, trainable=True, name="hub")
assign_ops = []
assign_phs = []
for _, v in sorted(hub_module.variable_map.items()):
ph = tf.placeholder(shape=v.shape, dtype=v.dtype)
assign_phs.append(ph)
assign_ops.append(tf.assign(v, ph))
with tf.Session() as module_session:
module_session.run(tf.local_variables_initializer())
module_session.run(tf.global_variables_initializer())
module_session.run(
assign_ops, feed_dict=dict(zip(assign_phs, module_weights)))
if overwrite and gfile.exists(path):
gfile.rmtree(path)
gfile.makedirs(path)
hub_module.export(path, module_session)
class SmartModuleImport(object):
"""A class for importing graph building objects from TF-Hub modules."""
def __init__(self, module):
self._module = module
self._method_specs = pickle.loads(
self._module.get_attached_message("methods",
tf.train.BytesList).value[0])
self._properties = pickle.loads(
self._module.get_attached_message("properties",
tf.train.BytesList).value[0])
def _create_wrapped_method(self, method):
"""Creates a wrapped method that converts nested inputs and outputs."""
def wrapped_method(*args, **kwargs):
"""A wrapped method around a TF-Hub module signature."""
inputs = _getcallargs(self._method_specs[method]["specs"], *args,
**kwargs)
nest.assert_same_structure(self._method_specs[method]["inputs"], inputs)
flat_inputs = nest.flatten(inputs)
flat_inputs = {
str(k): v for k, v in zip(range(len(flat_inputs)), flat_inputs)
}
signature = "default" if method == "__call__" else method
flat_outputs = self._module(
flat_inputs, signature=signature, as_dict=True)
flat_outputs = [v for _, v in sorted(flat_outputs.items())]
output_spec = self._method_specs[method]["outputs"]
if output_spec is None:
if len(flat_outputs) != 1:
raise ValueError(
"Expected output containing a single tensor, found {}".format(
flat_outputs))
outputs = flat_outputs[0]
else:
outputs = nest.unflatten_as(output_spec, flat_outputs)
return outputs
return wrapped_method
def __getattr__(self, name):
if name in self._method_specs:
return self._create_wrapped_method(name)
if name in self._properties:
return self._properties[name]
return getattr(self._module, name)
def __call__(self, *args, **kwargs):
return self._create_wrapped_method("__call__")(*args, **kwargs)