-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
62 changed files
with
4,141 additions
and
34 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
--feats-audio-feat | ||
logfb | ||
--feats-sample-frequency | ||
8000 | ||
--feats-frame-length | ||
25 | ||
--feats-fb-type | ||
linear | ||
--feats-low-freq | ||
20 | ||
--feats-high-freq | ||
3700 | ||
--feats-num-filters | ||
64 | ||
--feats-snip-edges | ||
false | ||
--feats-use-energy | ||
false | ||
--mvn-context | ||
150 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
116 changes: 116 additions & 0 deletions
116
...stmn_res2net50w26s4_eina_hln_arcs30m0.3_trn_alllangs_nocv_nocnceleb_adam_lr0.01.amp.v1.sh
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
# Res2Net50 x-vector with mixed precision training | ||
|
||
# acoustic features | ||
feat_config=conf/fbank64_mvn_8k.pyconf | ||
feat_type=fbank64_stmn | ||
|
||
|
||
# x-vector training | ||
nnet_data=alllangs_nocv_nocnceleb | ||
nnet_num_augs=4 | ||
aug_opt="--train-aug-cfg conf/reverb_noise_aug.yml --val-aug-cfg conf/reverb_noise_aug.yml" | ||
|
||
batch_size_1gpu=8 | ||
eff_batch_size=512 # effective batch size | ||
ipe=$nnet_num_augs | ||
min_chunk=4 | ||
max_chunk=4 | ||
lr=0.01 | ||
|
||
nnet_type=res2net50 | ||
dropout=0 | ||
embed_dim=256 | ||
width_factor=1.625 | ||
scale=4 | ||
ws_tag=w26s4 | ||
|
||
s=30 | ||
margin_warmup=20 | ||
margin=0.3 | ||
|
||
nnet_opt="--resnet-type $nnet_type --in-feats 64 --in-channels 1 --in-kernel-size 3 --in-stride 1 --no-maxpool --norm-layer instance-norm-affine --head-norm-layer layer-norm --no-maxpool --res2net-width-factor $width_factor --res2net-scale $scale" | ||
|
||
opt_opt="--opt-optimizer adam --opt-lr $lr --opt-beta1 0.9 --opt-beta2 0.95 --opt-weight-decay 1e-5 --opt-amsgrad" # --use-amp" | ||
lrs_opt="--lrsch-lrsch-type exp_lr --lrsch-decay-rate 0.5 --lrsch-decay-steps 10000 --lrsch-hold-steps 40000 --lrsch-min-lr 1e-5 --lrsch-warmup-steps 1000 --lrsch-update-lr-on-opt-step" | ||
|
||
nnet_name=${feat_type}_${nnet_type}${ws_tag}_eina_hln_e${embed_dim}_arcs${s}m${margin}_do${dropout}_adam_lr${lr}_b${eff_batch_size}_amp.v1.$nnet_data | ||
nnet_num_epochs=50 | ||
nnet_dir=exp/xvector_nnets/$nnet_name | ||
nnet=$nnet_dir/model_ep0050.pth | ||
|
||
|
||
# xvector full net finetuning with out-of-domain | ||
ft_batch_size_1gpu=4 | ||
ft_eff_batch_size=128 # effective batch size | ||
ft_min_chunk=10 | ||
ft_max_chunk=20 | ||
ft_ipe=1 | ||
ft_lr=0.05 | ||
ft_nnet_num_epochs=21 | ||
ft_nnet_num_epochs=45 | ||
ft_margin=0.3 | ||
ft_margin_warmup=3 | ||
|
||
ft_opt_opt="--opt-optimizer sgd --opt-lr $ft_lr --opt-momentum 0.9 --opt-weight-decay 1e-5 --use-amp --var-batch-size" | ||
ft_lrs_opt="--lrsch-lrsch-type cos_lr --lrsch-t 2500 --lrsch-t-mul 2 --lrsch-warm-restarts --lrsch-gamma 0.75 --lrsch-min-lr 1e-4 --lrsch-warmup-steps 100 --lrsch-update-lr-on-opt-step" | ||
ft_nnet_name=${nnet_name}.ft_${ft_min_chunk}_${ft_max_chunk}_arcm${ft_margin}_sgdcos_lr${ft_lr}_b${ft_eff_batch_size}_amp.v2 | ||
ft_nnet_dir=exp/xvector_nnets/$ft_nnet_name | ||
ft_nnet=$ft_nnet_dir/model_ep0014.pth | ||
|
||
|
||
# xvector last-layer finetuning realtel | ||
reg_layers_classif=0 | ||
reg_layers_enc="0 1 2 3 4" | ||
nnet_adapt_data=realtel | ||
ft2_batch_size_1gpu=16 | ||
ft2_eff_batch_size=128 # effective batch size | ||
ft2_ipe=1 | ||
ft2_lr=0.01 | ||
ft2_nnet_num_epochs=35 | ||
ft2_margin_warmup=3 | ||
ft2_reg_weight_embed=0.1 | ||
ft2_min_chunk=10 | ||
ft2_max_chunk=60 | ||
|
||
ft2_opt_opt="--opt-optimizer sgd --opt-lr $ft2_lr --opt-momentum 0.9 --opt-weight-decay 1e-5 --use-amp --var-batch-size" | ||
ft2_lrs_opt="--lrsch-lrsch-type cos_lr --lrsch-t 2500 --lrsch-t-mul 2 --lrsch-warm-restarts --lrsch-gamma 0.75 --lrsch-min-lr 1e-4 --lrsch-warmup-steps 100 --lrsch-update-lr-on-opt-step" | ||
ft2_nnet_name=${ft_nnet_name}.ft_eaffine_rege_w${ft2_reg_weight_embed}_${ft2_min_chunk}_${ft2_max_chunk}_sgdcos_lr${ft2_lr}_b${ft2_eff_batch_size}_amp.v2.$nnet_adapt_data | ||
ft2_nnet_dir=exp/xvector_nnets/$ft2_nnet_name | ||
ft2_nnet=$ft2_nnet_dir/model_ep0015.pth | ||
|
||
|
||
# xvector full nnet finetuning | ||
ft3_batch_size_1gpu=2 | ||
ft3_eff_batch_size=128 # effective batch size | ||
ft3_ipe=1 | ||
ft3_lr=0.01 | ||
ft3_nnet_num_epochs=10 | ||
ft3_margin_warmup=20 | ||
ft3_reg_weight_embed=0.1 | ||
ft3_reg_weight_enc=0.1 | ||
ft3_min_chunk=10 | ||
ft3_max_chunk=60 | ||
|
||
ft3_opt_opt="--opt-optimizer sgd --opt-lr $ft3_lr --opt-momentum 0.9 --opt-weight-decay 1e-5 --use-amp --var-batch-size" | ||
ft3_lrs_opt="--lrsch-lrsch-type cos_lr --lrsch-t 2500 --lrsch-t-mul 2 --lrsch-warm-restarts --lrsch-gamma 0.75 --lrsch-min-lr 1e-4 --lrsch-warmup-steps 100 --lrsch-update-lr-on-opt-step" | ||
ft3_nnet_name=${ft2_nnet_name}.ft_reg_wenc${ft3_reg_weight_enc}_we${ft3_reg_weigth_embed}_${ft3_min_chunk}_${ft3_max_chunk}_sgdcos_lr${ft3_lr}_b${ft3_eff_batch_size}_amp.v2 | ||
ft3_nnet_name=${ft2_nnet_name}.ft_${ft3_min_chunk}_${ft3_max_chunk}_sgdcos_lr${ft3_lr}_b${ft3_eff_batch_size}_amp.v2 | ||
ft3_nnet_dir=exp/xvector_nnets/$ft3_nnet_name | ||
ft3_nnet=$ft3_nnet_dir/model_ep0010.pth | ||
|
||
|
||
# back-end | ||
plda_aug_config=conf/noise_aug.yml | ||
plda_num_augs=0 | ||
# if [ $plda_num_augs -eq 0 ]; then | ||
# plda_data=sre_tel | ||
# plda_adapt_data=sre18_cmn2_adapt_lab | ||
# else | ||
# plda_data=sre_tel_augx${plda_num_augs} | ||
# plda_adapt_data=sre18_cmn2_adapt_lab_augx${plda_num_augs} | ||
# fi | ||
# plda_type=splda | ||
# lda_dim=200 | ||
# plda_y_dim=150 | ||
# plda_z_dim=200 | ||
|
112 changes: 112 additions & 0 deletions
112
...snet34_eina_hln_bmhah64d8192_arcs30m0.3_trn_alllangs_nocv_nocnceleb_adam_lr0.01.amp.v2.sh
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
# ResNet34 x-vector with mixed precision training | ||
|
||
# acoustic features | ||
feat_config=conf/fbank64_mvn_8k.pyconf | ||
feat_type=fbank64_stmn | ||
|
||
|
||
# x-vector training | ||
nnet_data=alllangs_nocv_nocnceleb | ||
nnet_num_augs=4 | ||
aug_opt="--train-aug-cfg conf/reverb_noise_aug.yml --val-aug-cfg conf/reverb_noise_aug.yml" | ||
|
||
batch_size_1gpu=32 | ||
eff_batch_size=512 # effective batch size | ||
ipe=$nnet_num_augs | ||
min_chunk=4 | ||
max_chunk=4 | ||
lr=0.01 | ||
|
||
nnet_type=resnet34 | ||
dropout=0 | ||
embed_dim=256 | ||
|
||
s=30 | ||
margin_warmup=20 | ||
margin=0.3 | ||
|
||
nnet_opt="--resnet-type $nnet_type --in-feats 64 --in-channels 1 --in-kernel-size 3 --in-stride 1 --no-maxpool --norm-layer instance-norm-affine --head-norm-layer layer-norm --pool-type scaled-dot-prod-att-v1 --pool-num-heads 64 --pool-d-k 128 --pool-d-v 128 --pool-bin-attn" | ||
|
||
opt_opt="--opt-optimizer adam --opt-lr $lr --opt-beta1 0.9 --opt-beta2 0.95 --opt-weight-decay 1e-5 --opt-amsgrad" # --use-amp" | ||
lrs_opt="--lrsch-lrsch-type exp_lr --lrsch-decay-rate 0.5 --lrsch-decay-steps 10000 --lrsch-hold-steps 40000 --lrsch-min-lr 1e-5 --lrsch-warmup-steps 1000 --lrsch-update-lr-on-opt-step" | ||
|
||
nnet_name=${feat_type}_${nnet_type}_eina_hln_bmhah64d8192_e${embed_dim}_arcs${s}m${margin}_do${dropout}_adam_lr${lr}_b${eff_batch_size}_amp.v1.$nnet_data | ||
nnet_num_epochs=50 | ||
nnet_dir=exp/xvector_nnets/$nnet_name | ||
nnet=$nnet_dir/model_ep0050.pth | ||
|
||
|
||
# xvector full net finetuning with out-of-domain | ||
ft_batch_size_1gpu=4 | ||
ft_eff_batch_size=128 # effective batch size | ||
ft_min_chunk=10 | ||
ft_max_chunk=60 | ||
ft_ipe=1 | ||
ft_lr=0.05 | ||
ft_nnet_num_epochs=21 | ||
ft_margin=0.3 | ||
ft_margin_warmup=3 | ||
|
||
ft_opt_opt="--opt-optimizer sgd --opt-lr $ft_lr --opt-momentum 0.9 --opt-weight-decay 1e-5 --use-amp --var-batch-size" | ||
ft_lrs_opt="--lrsch-lrsch-type cos_lr --lrsch-t 2500 --lrsch-t-mul 2 --lrsch-warm-restarts --lrsch-gamma 0.75 --lrsch-min-lr 1e-4 --lrsch-warmup-steps 100 --lrsch-update-lr-on-opt-step" | ||
ft_nnet_name=${nnet_name}.ft_${ft_min_chunk}_${ft_max_chunk}_arcm${ft_margin}_sgdcos_lr${ft_lr}_b${ft_eff_batch_size}_amp.v2 | ||
ft_nnet_dir=exp/xvector_nnets/$ft_nnet_name | ||
ft_nnet=$ft_nnet_dir/model_ep0021.pth | ||
|
||
|
||
# xvector last-layer finetuning realtel | ||
reg_layers_classif=0 | ||
reg_layers_enc="0 1 2 3 4" | ||
nnet_adapt_data=realtel | ||
ft2_batch_size_1gpu=16 | ||
ft2_eff_batch_size=128 # effective batch size | ||
ft2_ipe=1 | ||
ft2_lr=0.01 | ||
ft2_nnet_num_epochs=35 | ||
ft2_margin_warmup=3 | ||
ft2_reg_weight_embed=0.1 | ||
ft2_min_chunk=10 | ||
ft2_max_chunk=60 | ||
|
||
ft2_opt_opt="--opt-optimizer sgd --opt-lr $ft2_lr --opt-momentum 0.9 --opt-weight-decay 1e-5 --use-amp --var-batch-size" | ||
ft2_lrs_opt="--lrsch-lrsch-type cos_lr --lrsch-t 2500 --lrsch-t-mul 2 --lrsch-warm-restarts --lrsch-gamma 0.75 --lrsch-min-lr 1e-4 --lrsch-warmup-steps 100 --lrsch-update-lr-on-opt-step" | ||
ft2_nnet_name=${ft_nnet_name}.ft_eaffine_rege_w${ft2_reg_weight_embed}_${ft2_min_chunk}_${ft2_max_chunk}_sgdcos_lr${ft2_lr}_b${ft2_eff_batch_size}_amp.v2.$nnet_adapt_data | ||
ft2_nnet_dir=exp/xvector_nnets/$ft2_nnet_name | ||
ft2_nnet=$ft2_nnet_dir/model_ep0015.pth | ||
|
||
|
||
# xvector full nnet finetuning | ||
ft3_batch_size_1gpu=2 | ||
ft3_eff_batch_size=128 # effective batch size | ||
ft3_ipe=1 | ||
ft3_lr=0.01 | ||
ft3_nnet_num_epochs=10 | ||
ft3_margin_warmup=20 | ||
ft3_reg_weight_embed=0.1 | ||
ft3_reg_weight_enc=0.1 | ||
ft3_min_chunk=10 | ||
ft3_max_chunk=60 | ||
|
||
ft3_opt_opt="--opt-optimizer sgd --opt-lr $ft3_lr --opt-momentum 0.9 --opt-weight-decay 1e-5 --use-amp --var-batch-size" | ||
ft3_lrs_opt="--lrsch-lrsch-type cos_lr --lrsch-t 2500 --lrsch-t-mul 2 --lrsch-warm-restarts --lrsch-gamma 0.75 --lrsch-min-lr 1e-4 --lrsch-warmup-steps 100 --lrsch-update-lr-on-opt-step" | ||
ft3_nnet_name=${ft2_nnet_name}.ft_reg_wenc${ft3_reg_weight_enc}_we${ft3_reg_weigth_embed}_${ft3_min_chunk}_${ft3_max_chunk}_sgdcos_lr${ft3_lr}_b${ft3_eff_batch_size}_amp.v2 | ||
ft3_nnet_name=${ft2_nnet_name}.ft_${ft3_min_chunk}_${ft3_max_chunk}_sgdcos_lr${ft3_lr}_b${ft3_eff_batch_size}_amp.v2 | ||
ft3_nnet_dir=exp/xvector_nnets/$ft3_nnet_name | ||
ft3_nnet=$ft3_nnet_dir/model_ep0010.pth | ||
|
||
|
||
# back-end | ||
plda_aug_config=conf/noise_aug.yml | ||
plda_num_augs=0 | ||
# if [ $plda_num_augs -eq 0 ]; then | ||
# plda_data=sre_tel | ||
# plda_adapt_data=sre18_cmn2_adapt_lab | ||
# else | ||
# plda_data=sre_tel_augx${plda_num_augs} | ||
# plda_adapt_data=sre18_cmn2_adapt_lab_augx${plda_num_augs} | ||
# fi | ||
# plda_type=splda | ||
# lda_dim=200 | ||
# plda_y_dim=150 | ||
# plda_z_dim=200 | ||
|
114 changes: 114 additions & 0 deletions
114
...et34_eina_hln_chattstatsi128_arcs30m0.3_trn_alllangs_nocv_nocnceleb_adam_lr0.01.amp.v1.sh
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
# ResNet34 x-vector with mixed precision training | ||
|
||
# acoustic features | ||
feat_config=conf/fbank64_mvn_8k.pyconf | ||
feat_type=fbank64_stmn | ||
|
||
|
||
# x-vector training | ||
nnet_data=alllangs_nocv_nocnceleb | ||
nnet_num_augs=4 | ||
aug_opt="--train-aug-cfg conf/reverb_noise_aug.yml --val-aug-cfg conf/reverb_noise_aug.yml" | ||
|
||
batch_size_1gpu=32 | ||
eff_batch_size=512 # effective batch size | ||
ipe=$nnet_num_augs | ||
min_chunk=4 | ||
max_chunk=4 | ||
lr=0.01 | ||
|
||
nnet_type=resnet34 | ||
dropout=0 | ||
embed_dim=256 | ||
|
||
s=30 | ||
margin_warmup=20 | ||
margin=0.3 | ||
|
||
attstats_inner=128 | ||
|
||
nnet_opt="--resnet-type $nnet_type --in-feats 64 --in-channels 1 --in-kernel-size 3 --in-stride 1 --no-maxpool --norm-layer instance-norm-affine --head-norm-layer layer-norm --pool-type ch-wise-att-mean-stddev --pool-inner-feats $attstats_inner" | ||
|
||
opt_opt="--opt-optimizer adam --opt-lr $lr --opt-beta1 0.9 --opt-beta2 0.95 --opt-weight-decay 1e-5 --opt-amsgrad" # --use-amp" | ||
lrs_opt="--lrsch-lrsch-type exp_lr --lrsch-decay-rate 0.5 --lrsch-decay-steps 10000 --lrsch-hold-steps 40000 --lrsch-min-lr 1e-5 --lrsch-warmup-steps 1000 --lrsch-update-lr-on-opt-step" | ||
|
||
nnet_name=${feat_type}_${nnet_type}_eina_hln_chattstatsi128_e${embed_dim}_arcs${s}m${margin}_do${dropout}_adam_lr${lr}_b${eff_batch_size}_amp.v1.$nnet_data | ||
nnet_num_epochs=50 | ||
nnet_dir=exp/xvector_nnets/$nnet_name | ||
nnet=$nnet_dir/model_ep0050.pth | ||
|
||
|
||
# xvector full net finetuning with out-of-domain | ||
ft_batch_size_1gpu=4 | ||
ft_eff_batch_size=128 # effective batch size | ||
ft_min_chunk=10 | ||
ft_max_chunk=60 | ||
ft_ipe=1 | ||
ft_lr=0.05 | ||
ft_nnet_num_epochs=21 | ||
ft_margin=0.3 | ||
ft_margin_warmup=3 | ||
|
||
ft_opt_opt="--opt-optimizer sgd --opt-lr $ft_lr --opt-momentum 0.9 --opt-weight-decay 1e-5 --use-amp --var-batch-size" | ||
ft_lrs_opt="--lrsch-lrsch-type cos_lr --lrsch-t 2500 --lrsch-t-mul 2 --lrsch-warm-restarts --lrsch-gamma 0.75 --lrsch-min-lr 1e-4 --lrsch-warmup-steps 100 --lrsch-update-lr-on-opt-step" | ||
ft_nnet_name=${nnet_name}.ft_${ft_min_chunk}_${ft_max_chunk}_arcm${ft_margin}_sgdcos_lr${ft_lr}_b${ft_eff_batch_size}_amp.v2 | ||
ft_nnet_dir=exp/xvector_nnets/$ft_nnet_name | ||
ft_nnet=$ft_nnet_dir/model_ep0021.pth | ||
|
||
|
||
# xvector last-layer finetuning realtel | ||
reg_layers_classif=0 | ||
reg_layers_enc="0 1 2 3 4" | ||
nnet_adapt_data=realtel | ||
ft2_batch_size_1gpu=16 | ||
ft2_eff_batch_size=128 # effective batch size | ||
ft2_ipe=1 | ||
ft2_lr=0.01 | ||
ft2_nnet_num_epochs=35 | ||
ft2_margin_warmup=3 | ||
ft2_reg_weight_embed=0.1 | ||
ft2_min_chunk=10 | ||
ft2_max_chunk=60 | ||
|
||
ft2_opt_opt="--opt-optimizer sgd --opt-lr $ft2_lr --opt-momentum 0.9 --opt-weight-decay 1e-5 --use-amp --var-batch-size" | ||
ft2_lrs_opt="--lrsch-lrsch-type cos_lr --lrsch-t 2500 --lrsch-t-mul 2 --lrsch-warm-restarts --lrsch-gamma 0.75 --lrsch-min-lr 1e-4 --lrsch-warmup-steps 100 --lrsch-update-lr-on-opt-step" | ||
ft2_nnet_name=${ft_nnet_name}.ft_eaffine_rege_w${ft2_reg_weight_embed}_${ft2_min_chunk}_${ft2_max_chunk}_sgdcos_lr${ft2_lr}_b${ft2_eff_batch_size}_amp.v2.$nnet_adapt_data | ||
ft2_nnet_dir=exp/xvector_nnets/$ft2_nnet_name | ||
ft2_nnet=$ft2_nnet_dir/model_ep0015.pth | ||
|
||
|
||
# xvector full nnet finetuning | ||
ft3_batch_size_1gpu=2 | ||
ft3_eff_batch_size=128 # effective batch size | ||
ft3_ipe=1 | ||
ft3_lr=0.01 | ||
ft3_nnet_num_epochs=10 | ||
ft3_margin_warmup=20 | ||
ft3_reg_weight_embed=0.1 | ||
ft3_reg_weight_enc=0.1 | ||
ft3_min_chunk=10 | ||
ft3_max_chunk=60 | ||
|
||
ft3_opt_opt="--opt-optimizer sgd --opt-lr $ft3_lr --opt-momentum 0.9 --opt-weight-decay 1e-5 --use-amp --var-batch-size" | ||
ft3_lrs_opt="--lrsch-lrsch-type cos_lr --lrsch-t 2500 --lrsch-t-mul 2 --lrsch-warm-restarts --lrsch-gamma 0.75 --lrsch-min-lr 1e-4 --lrsch-warmup-steps 100 --lrsch-update-lr-on-opt-step" | ||
ft3_nnet_name=${ft2_nnet_name}.ft_reg_wenc${ft3_reg_weight_enc}_we${ft3_reg_weigth_embed}_${ft3_min_chunk}_${ft3_max_chunk}_sgdcos_lr${ft3_lr}_b${ft3_eff_batch_size}_amp.v2 | ||
ft3_nnet_name=${ft2_nnet_name}.ft_${ft3_min_chunk}_${ft3_max_chunk}_sgdcos_lr${ft3_lr}_b${ft3_eff_batch_size}_amp.v2 | ||
ft3_nnet_dir=exp/xvector_nnets/$ft3_nnet_name | ||
ft3_nnet=$ft3_nnet_dir/model_ep0010.pth | ||
|
||
|
||
# back-end | ||
plda_aug_config=conf/noise_aug.yml | ||
plda_num_augs=0 | ||
# if [ $plda_num_augs -eq 0 ]; then | ||
# plda_data=sre_tel | ||
# plda_adapt_data=sre18_cmn2_adapt_lab | ||
# else | ||
# plda_data=sre_tel_augx${plda_num_augs} | ||
# plda_adapt_data=sre18_cmn2_adapt_lab_augx${plda_num_augs} | ||
# fi | ||
# plda_type=splda | ||
# lda_dim=200 | ||
# plda_y_dim=150 | ||
# plda_z_dim=200 | ||
|
Oops, something went wrong.