-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
52 lines (45 loc) · 1.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import cv2
import time
from grabscreen import grab_screen
from getkeys import key_check
import os
def key_to_output(keys):
#[A,W,D]
output = [0,0,0]
if 'A' in keys:
output[0] = 1
elif 'D' in keys:
output[2] = 1
else:
output[1] = 1
return output
file_name = 'training_data.npy'
if os.path.isfile(file_name):
print('File exists, loading previous data!')
np_load_old = np.load
# modify the default parameters of np.load
np.load = lambda *a,**k: np_load_old(*a, allow_pickle=True, **k)
training_data = list(np.load(file_name))
np.load = np_load_old
else:
print("file doesn't exits starting fresh")
training_data = []
def main():
for i in list(range(4))[::-1]:
print(i+1)
time.sleep(1)
last_time = time.time()
while True:
screen = grab_screen(region=(0,40,800,640))
screen = cv2.cvtColor(screen, cv2.COLOR_RGB2GRAY)
screen = cv2.resize(screen,(80,60))
keys = key_check()
output = key_to_output(keys)
training_data.append([screen,output])
print('Frame took {} seconds'.format(time.time()-last_time))
last_time = time.time()
if len(training_data) % 1000 == 0:
print(len(training_data))
np.save(file_name,training_data)
main()