-
Notifications
You must be signed in to change notification settings - Fork 2
/
video_depth_estimation.py
55 lines (44 loc) · 1.46 KB
/
video_depth_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
import pafy
import numpy as np
import glob
from acvnet import ACVNet, CameraConfig
# Initialize video
# cap = cv2.VideoCapture("video.mp4")
videoUrl = 'https://youtu.be/Yui48w71SG0'
start_time = 0 # skip first {start_time} seconds
videoPafy = pafy.new(videoUrl)
print(videoPafy.streams)
cap = cv2.VideoCapture(videoPafy.streams[-1].url)
cap.set(cv2.CAP_PROP_POS_FRAMES, start_time*30)
# Store baseline (m) and focal length (pixel)
# TODO: Fix with the values witht the correct configuration
input_width = 1280
camera_config = CameraConfig(0.12, 0.5*input_width/0.72)
max_distance = 10
# Initialize model
model_path='models/acvnet_maxdisp192_sceneflow_480x640/acvnet_maxdisp192_sceneflow_480x640.onnx'
depth_estimator = ACVNet(model_path, camera_config, max_distance)
cv2.namedWindow("Estimated depth", cv2.WINDOW_NORMAL)
while cap.isOpened():
try:
# Read frame from the video
ret, frame = cap.read()
if not ret:
break
except:
continue
# Extract the left and right images
left_img = frame[:,:frame.shape[1]//3]
right_img = frame[:,frame.shape[1]//3:frame.shape[1]*2//3]
color_real_depth = frame[:,frame.shape[1]*2//3:]
# Estimate the depth
disparity_map = depth_estimator(left_img, right_img)
color_depth = depth_estimator.draw_depth()
combined_image = np.hstack((left_img, color_real_depth, color_depth))
cv2.imshow("Estimated depth", combined_image)
# Press key q to stop
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()