diff --git a/src/Idris/IDEMode/Parser.idr b/src/Idris/IDEMode/Parser.idr index d95c230386..4cef8b388c 100644 --- a/src/Idris/IDEMode/Parser.idr +++ b/src/Idris/IDEMode/Parser.idr @@ -3,14 +3,14 @@ ||| we can reuse the standard stuff module Idris.IDEMode.Parser +import Core.Core +import Core.FC + import Protocol.SExp import Protocol.SExp.Parser import Parser.Source -import Core.Core -import Core.FC - Cast SExpError Error where cast (LexError err) = fromLexError (Virtual Interactive) err cast (ParseErrors err) = fromParsingErrors (Virtual Interactive) err diff --git a/src/Idris/Parser.idr b/src/Idris/Parser.idr index 1044d6eea2..3f4d99606e 100644 --- a/src/Idris/Parser.idr +++ b/src/Idris/Parser.idr @@ -34,14 +34,14 @@ boundedNameDecoration fname decor bstr = ((fname, start bstr, end bstr) decorateBoundedNames : OriginDesc -> Decoration -> List (WithBounds Name) -> EmptyRule () decorateBoundedNames fname decor bns - = act $ MkState (map (boundedNameDecoration fname decor) bns) [] + = act $ MkState (cast (map (boundedNameDecoration fname decor) bns)) [] decorateBoundedName : OriginDesc -> Decoration -> WithBounds Name -> EmptyRule () decorateBoundedName fname decor bn = actD (boundedNameDecoration fname decor bn) decorateKeywords : OriginDesc -> List (WithBounds a) -> EmptyRule () decorateKeywords fname xs - = act $ MkState (map (decorationFromBounded fname Keyword) xs) [] + = act $ MkState (cast (map (decorationFromBounded fname Keyword) xs)) [] dependentDecorate : OriginDesc -> Rule a -> (a -> Decoration) -> Rule a dependentDecorate fname rule decor = do @@ -421,7 +421,7 @@ mutual pure $ let fc = boundToFC fname (mergeBounds s b) nilFC = if null xs then fc else boundToFC fname b - in PList fc nilFC (map (\ t => (boundToFC fname t, t.val)) xs)) + in PList fc nilFC (cast (map (\ t => (boundToFC fname t, t.val)) xs))) snocListExpr : OriginDesc -> WithBounds () -> IndentInfo -> Rule PTerm snocListExpr fname s indents diff --git a/src/Parser/Rule/Source.idr b/src/Parser/Rule/Source.idr index b977c5e49f..95c2afb1a0 100644 --- a/src/Parser/Rule/Source.idr +++ b/src/Parser/Rule/Source.idr @@ -7,29 +7,52 @@ import Core.Context import Core.TT import Core.Metadata import Data.List1 +import Data.SnocList import Data.String import Libraries.Data.List.Extra %default total +||| This version of the Parser's state is parameterized over +||| the container for SemanticDecorations. The parser should +||| only work the ParsingState type below and after parsing +||| is complete, use the regular State type. public export -record State where +record ParserState (container : Type -> Type) where constructor MkState - decorations : SemanticDecorations + decorations : container ASemanticDecoration holeNames : List String +||| This state needs to provide efficient concatenation. +public export +ParsingState : Type +ParsingState = ParserState SnocList + +||| This is the final state after parsing. We no longer +||| need to support efficient concatenation. +public export +State : Type +State = ParserState List + +export +toState : ParsingState -> State +toState (MkState decs hs) = MkState (cast decs) hs + +-- To help prevent concatenation slow downs, we only +-- provide Semigroup and Monoid for the efficient +-- version of the ParserState. export -Semigroup State where +Semigroup ParsingState where MkState decs1 hs1 <+> MkState decs2 hs2 - = MkState (decs1 ++ decs2) (hs1 ++ hs2) + = MkState (decs1 <+> decs2) (hs1 ++ hs2) export -Monoid State where - neutral = MkState [] [] +Monoid ParsingState where + neutral = MkState [<] [] public export BRule : Bool -> Type -> Type -BRule = Grammar State Token +BRule = Grammar ParsingState Token public export Rule : Type -> Type @@ -41,11 +64,11 @@ EmptyRule = BRule False export actD : ASemanticDecoration -> EmptyRule () -actD s = act (MkState [s] []) +actD s = act (MkState [ EmptyRule () -actH s = act (MkState [] [s]) +actH s = act (MkState [<] [s]) export eoi : EmptyRule () diff --git a/src/Parser/Source.idr b/src/Parser/Source.idr index 4d798140a6..86452302b0 100644 --- a/src/Parser/Source.idr +++ b/src/Parser/Source.idr @@ -17,7 +17,7 @@ export runParserTo : {e : _} -> (origin : OriginDesc) -> Maybe LiterateStyle -> Lexer -> - String -> Grammar State Token e ty -> + String -> Grammar ParsingState Token e ty -> Either Error (List Warning, State, ty) runParserTo origin lit reject str p = do str <- mapFst (fromLitError origin) $ unlit lit str @@ -28,12 +28,14 @@ runParserTo origin lit reject str p let ws = ws <&> \ (mb, warn) => let mkFC = \ b => MkFC origin (startBounds b) (endBounds b) in ParserWarning (maybe EmptyFC mkFC mb) warn - Right (ws, { decorations $= (cs ++) } decs, parsed) + let state : State + state = { decorations $= (cs++) } (toState decs) + pure (ws, state, parsed) export runParser : {e : _} -> (origin : OriginDesc) -> Maybe LiterateStyle -> String -> - Grammar State Token e ty -> + Grammar ParsingState Token e ty -> Either Error (List Warning, State, ty) runParser origin lit = runParserTo origin lit (pred $ const False) diff --git a/src/Protocol/SExp/Parser.idr b/src/Protocol/SExp/Parser.idr index 92b1974558..03496eb146 100644 --- a/src/Protocol/SExp/Parser.idr +++ b/src/Protocol/SExp/Parser.idr @@ -86,7 +86,7 @@ data SExpError = | ParseErrors (List1 $ ParsingError Token) ideParser : {e : _} -> - String -> Grammar State Token e ty -> Either SExpError ty + String -> Grammar ParsingState Token e ty -> Either SExpError ty ideParser str p = do toks <- mapFst LexError $ idelex str (_, _, (parsed, _)) <- mapFst ParseErrors $ parseWith p toks diff --git a/tests/Main.idr b/tests/Main.idr index 0fa2f2f1cb..0558b09c0c 100644 --- a/tests/Main.idr +++ b/tests/Main.idr @@ -124,7 +124,8 @@ idrisTestsPerformance = MkTestPool "Performance" [] Nothing -- Performance: things which have been slow in the past, or which -- pose interesting challenges for the elaborator ["perf001", "perf002", "perf003", "perf004", "perf005", - "perf007", "perf008", "perf009", "perf010", "perf011"] + "perf007", "perf008", "perf009", "perf010", "perf011", + "perf2202"] idrisTestsRegression : TestPool idrisTestsRegression = MkTestPool "Various regressions" [] Nothing diff --git a/tests/idris2/perf2202/Church.idr b/tests/idris2/perf2202/Church.idr new file mode 100644 index 0000000000..a0d9d374fe --- /dev/null +++ b/tests/idris2/perf2202/Church.idr @@ -0,0 +1,3195 @@ +Ty : Type +Ty = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty : Ty +empty = \ _, empty, _ => empty + +arr : Ty -> Ty -> Ty +arr = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con : Type +Con = (Con : Type) + ->(nil : Con) + ->(snoc : Con -> Ty -> Con) + -> Con + +nil : Con +nil = \ con, nil, snoc => nil + +snoc : Con -> Ty -> Con +snoc = \ g, a, con, nil, snoc => snoc (g con nil snoc) a + +Var : Con -> Ty -> Type +Var = \ g, a => + (Var : Con -> Ty -> Type) + -> (vz : (g : _)-> (a : _) -> Var (snoc g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var g a -> Var (snoc g b) a) + -> Var g a + +vz : {g : _}-> {a : _} -> Var (snoc g a) a +vz = \ var, vz, vs => vz _ _ + +vs : {g : _} -> {B : _} -> {a : _} -> Var g a -> Var (snoc g B) a +vs = \ x, var, vz, vs => vs _ _ _ (x var vz vs) + +Tm : Con -> Ty -> Type +Tm = \ g, a => + (Tm : Con -> Ty -> Type) + -> (var : (g : _) -> (a : _) -> Var g a -> Tm g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm (snoc g a) B -> Tm g (arr a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm g (arr a B) -> Tm g a -> Tm g B) + -> Tm g a + +var : {g : _} -> {a : _} -> Var g a -> Tm g a +var = \ x, tm, var, lam, app => var _ _ x + +lam : {g : _} -> {a : _} -> {B : _} -> Tm (snoc g a) B -> Tm g (arr a B) +lam = \ t, tm, var, lam, app => lam _ _ _ (t tm var lam app) + +app : {g:_}->{a:_}->{B:_} -> Tm g (arr a B) -> Tm g a -> Tm g B +app = \ t, u, tm, var, lam, app => app _ _ _ (t tm var lam app) (u tm var lam app) + +v0 : {g:_}->{a:_} -> Tm (snoc g a) a +v0 = var vz + +v1 : {g:_}->{a:_}-> {B:_}-> Tm (snoc (snoc g a) B) a +v1 = var (vs vz) + +v2 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm (snoc (snoc (snoc g a) B) C) a +v2 = var (vs (vs vz)) + +v3 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm (snoc (snoc (snoc (snoc g a) B) C) D) a +v3 = var (vs (vs (vs vz))) + +v4 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm (snoc (snoc (snoc (snoc (snoc g a) B) C) D) E) a +v4 = var (vs (vs (vs (vs vz)))) + +test : {g:_}-> {a:_} -> Tm g (arr (arr a a) (arr a a)) +test = lam (lam (app v1 (app v1 (app v1 (app v1 (app v1 (app v1 v0))))))) +Ty1 : Type +Ty1 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty1 : Ty1 +empty1 = \ _, empty, _ => empty + +arr1 : Ty1 -> Ty1 -> Ty1 +arr1 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con1 : Type +Con1 = (Con1 : Type) + ->(nil : Con1) + ->(snoc : Con1 -> Ty1 -> Con1) + -> Con1 + +nil1 : Con1 +nil1 = \ con, nil1, snoc => nil1 + +snoc1 : Con1 -> Ty1 -> Con1 +snoc1 = \ g, a, con, nil1, snoc1 => snoc1 (g con nil1 snoc1) a + +Var1 : Con1 -> Ty1 -> Type +Var1 = \ g, a => + (Var1 : Con1 -> Ty1 -> Type) + -> (vz : (g : _)-> (a : _) -> Var1 (snoc1 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var1 g a -> Var1 (snoc1 g b) a) + -> Var1 g a + +vz1 : {g : _}-> {a : _} -> Var1 (snoc1 g a) a +vz1 = \ var, vz1, vs => vz1 _ _ + +vs1 : {g : _} -> {B : _} -> {a : _} -> Var1 g a -> Var1 (snoc1 g B) a +vs1 = \ x, var, vz1, vs1 => vs1 _ _ _ (x var vz1 vs1) + +Tm1 : Con1 -> Ty1 -> Type +Tm1 = \ g, a => + (Tm1 : Con1 -> Ty1 -> Type) + -> (var : (g : _) -> (a : _) -> Var1 g a -> Tm1 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm1 (snoc1 g a) B -> Tm1 g (arr1 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm1 g (arr1 a B) -> Tm1 g a -> Tm1 g B) + -> Tm1 g a + +var1 : {g : _} -> {a : _} -> Var1 g a -> Tm1 g a +var1 = \ x, tm, var1, lam, app => var1 _ _ x + +lam1 : {g : _} -> {a : _} -> {B : _} -> Tm1 (snoc1 g a) B -> Tm1 g (arr1 a B) +lam1 = \ t, tm, var1, lam1, app => lam1 _ _ _ (t tm var1 lam1 app) + +app1 : {g:_}->{a:_}->{B:_} -> Tm1 g (arr1 a B) -> Tm1 g a -> Tm1 g B +app1 = \ t, u, tm, var1, lam1, app1 => app1 _ _ _ (t tm var1 lam1 app1) (u tm var1 lam1 app1) + +v01 : {g:_}->{a:_} -> Tm1 (snoc1 g a) a +v01 = var1 vz1 + +v11 : {g:_}->{a:_}-> {B:_}-> Tm1 (snoc1 (snoc1 g a) B) a +v11 = var1 (vs1 vz1) + +v21 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm1 (snoc1 (snoc1 (snoc1 g a) B) C) a +v21 = var1 (vs1 (vs1 vz1)) + +v31 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm1 (snoc1 (snoc1 (snoc1 (snoc1 g a) B) C) D) a +v31 = var1 (vs1 (vs1 (vs1 vz1))) + +v41 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm1 (snoc1 (snoc1 (snoc1 (snoc1 (snoc1 g a) B) C) D) E) a +v41 = var1 (vs1 (vs1 (vs1 (vs1 vz1)))) + +test1 : {g:_}-> {a:_} -> Tm1 g (arr1 (arr1 a a) (arr1 a a)) +test1 = lam1 (lam1 (app1 v11 (app1 v11 (app1 v11 (app1 v11 (app1 v11 (app1 v11 v01))))))) +Ty2 : Type +Ty2 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty2 : Ty2 +empty2 = \ _, empty, _ => empty + +arr2 : Ty2 -> Ty2 -> Ty2 +arr2 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con2 : Type +Con2 = (Con2 : Type) + ->(nil : Con2) + ->(snoc : Con2 -> Ty2 -> Con2) + -> Con2 + +nil2 : Con2 +nil2 = \ con, nil2, snoc => nil2 + +snoc2 : Con2 -> Ty2 -> Con2 +snoc2 = \ g, a, con, nil2, snoc2 => snoc2 (g con nil2 snoc2) a + +Var2 : Con2 -> Ty2 -> Type +Var2 = \ g, a => + (Var2 : Con2 -> Ty2 -> Type) + -> (vz : (g : _)-> (a : _) -> Var2 (snoc2 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var2 g a -> Var2 (snoc2 g b) a) + -> Var2 g a + +vz2 : {g : _}-> {a : _} -> Var2 (snoc2 g a) a +vz2 = \ var, vz2, vs => vz2 _ _ + +vs2 : {g : _} -> {B : _} -> {a : _} -> Var2 g a -> Var2 (snoc2 g B) a +vs2 = \ x, var, vz2, vs2 => vs2 _ _ _ (x var vz2 vs2) + +Tm2 : Con2 -> Ty2 -> Type +Tm2 = \ g, a => + (Tm2 : Con2 -> Ty2 -> Type) + -> (var : (g : _) -> (a : _) -> Var2 g a -> Tm2 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm2 (snoc2 g a) B -> Tm2 g (arr2 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm2 g (arr2 a B) -> Tm2 g a -> Tm2 g B) + -> Tm2 g a + +var2 : {g : _} -> {a : _} -> Var2 g a -> Tm2 g a +var2 = \ x, tm, var2, lam, app => var2 _ _ x + +lam2 : {g : _} -> {a : _} -> {B : _} -> Tm2 (snoc2 g a) B -> Tm2 g (arr2 a B) +lam2 = \ t, tm, var2, lam2, app => lam2 _ _ _ (t tm var2 lam2 app) + +app2 : {g:_}->{a:_}->{B:_} -> Tm2 g (arr2 a B) -> Tm2 g a -> Tm2 g B +app2 = \ t, u, tm, var2, lam2, app2 => app2 _ _ _ (t tm var2 lam2 app2) (u tm var2 lam2 app2) + +v02 : {g:_}->{a:_} -> Tm2 (snoc2 g a) a +v02 = var2 vz2 + +v12 : {g:_}->{a:_}-> {B:_}-> Tm2 (snoc2 (snoc2 g a) B) a +v12 = var2 (vs2 vz2) + +v22 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm2 (snoc2 (snoc2 (snoc2 g a) B) C) a +v22 = var2 (vs2 (vs2 vz2)) + +v32 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm2 (snoc2 (snoc2 (snoc2 (snoc2 g a) B) C) D) a +v32 = var2 (vs2 (vs2 (vs2 vz2))) + +v42 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm2 (snoc2 (snoc2 (snoc2 (snoc2 (snoc2 g a) B) C) D) E) a +v42 = var2 (vs2 (vs2 (vs2 (vs2 vz2)))) + +test2 : {g:_}-> {a:_} -> Tm2 g (arr2 (arr2 a a) (arr2 a a)) +test2 = lam2 (lam2 (app2 v12 (app2 v12 (app2 v12 (app2 v12 (app2 v12 (app2 v12 v02))))))) +Ty3 : Type +Ty3 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty3 : Ty3 +empty3 = \ _, empty, _ => empty + +arr3 : Ty3 -> Ty3 -> Ty3 +arr3 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con3 : Type +Con3 = (Con3 : Type) + ->(nil : Con3) + ->(snoc : Con3 -> Ty3 -> Con3) + -> Con3 + +nil3 : Con3 +nil3 = \ con, nil3, snoc => nil3 + +snoc3 : Con3 -> Ty3 -> Con3 +snoc3 = \ g, a, con, nil3, snoc3 => snoc3 (g con nil3 snoc3) a + +Var3 : Con3 -> Ty3 -> Type +Var3 = \ g, a => + (Var3 : Con3 -> Ty3 -> Type) + -> (vz : (g : _)-> (a : _) -> Var3 (snoc3 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var3 g a -> Var3 (snoc3 g b) a) + -> Var3 g a + +vz3 : {g : _}-> {a : _} -> Var3 (snoc3 g a) a +vz3 = \ var, vz3, vs => vz3 _ _ + +vs3 : {g : _} -> {B : _} -> {a : _} -> Var3 g a -> Var3 (snoc3 g B) a +vs3 = \ x, var, vz3, vs3 => vs3 _ _ _ (x var vz3 vs3) + +Tm3 : Con3 -> Ty3 -> Type +Tm3 = \ g, a => + (Tm3 : Con3 -> Ty3 -> Type) + -> (var : (g : _) -> (a : _) -> Var3 g a -> Tm3 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm3 (snoc3 g a) B -> Tm3 g (arr3 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm3 g (arr3 a B) -> Tm3 g a -> Tm3 g B) + -> Tm3 g a + +var3 : {g : _} -> {a : _} -> Var3 g a -> Tm3 g a +var3 = \ x, tm, var3, lam, app => var3 _ _ x + +lam3 : {g : _} -> {a : _} -> {B : _} -> Tm3 (snoc3 g a) B -> Tm3 g (arr3 a B) +lam3 = \ t, tm, var3, lam3, app => lam3 _ _ _ (t tm var3 lam3 app) + +app3 : {g:_}->{a:_}->{B:_} -> Tm3 g (arr3 a B) -> Tm3 g a -> Tm3 g B +app3 = \ t, u, tm, var3, lam3, app3 => app3 _ _ _ (t tm var3 lam3 app3) (u tm var3 lam3 app3) + +v03 : {g:_}->{a:_} -> Tm3 (snoc3 g a) a +v03 = var3 vz3 + +v13 : {g:_}->{a:_}-> {B:_}-> Tm3 (snoc3 (snoc3 g a) B) a +v13 = var3 (vs3 vz3) + +v23 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm3 (snoc3 (snoc3 (snoc3 g a) B) C) a +v23 = var3 (vs3 (vs3 vz3)) + +v33 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm3 (snoc3 (snoc3 (snoc3 (snoc3 g a) B) C) D) a +v33 = var3 (vs3 (vs3 (vs3 vz3))) + +v43 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm3 (snoc3 (snoc3 (snoc3 (snoc3 (snoc3 g a) B) C) D) E) a +v43 = var3 (vs3 (vs3 (vs3 (vs3 vz3)))) + +test3 : {g:_}-> {a:_} -> Tm3 g (arr3 (arr3 a a) (arr3 a a)) +test3 = lam3 (lam3 (app3 v13 (app3 v13 (app3 v13 (app3 v13 (app3 v13 (app3 v13 v03))))))) +Ty4 : Type +Ty4 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty4 : Ty4 +empty4 = \ _, empty, _ => empty + +arr4 : Ty4 -> Ty4 -> Ty4 +arr4 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con4 : Type +Con4 = (Con4 : Type) + ->(nil : Con4) + ->(snoc : Con4 -> Ty4 -> Con4) + -> Con4 + +nil4 : Con4 +nil4 = \ con, nil4, snoc => nil4 + +snoc4 : Con4 -> Ty4 -> Con4 +snoc4 = \ g, a, con, nil4, snoc4 => snoc4 (g con nil4 snoc4) a + +Var4 : Con4 -> Ty4 -> Type +Var4 = \ g, a => + (Var4 : Con4 -> Ty4 -> Type) + -> (vz : (g : _)-> (a : _) -> Var4 (snoc4 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var4 g a -> Var4 (snoc4 g b) a) + -> Var4 g a + +vz4 : {g : _}-> {a : _} -> Var4 (snoc4 g a) a +vz4 = \ var, vz4, vs => vz4 _ _ + +vs4 : {g : _} -> {B : _} -> {a : _} -> Var4 g a -> Var4 (snoc4 g B) a +vs4 = \ x, var, vz4, vs4 => vs4 _ _ _ (x var vz4 vs4) + +Tm4 : Con4 -> Ty4 -> Type +Tm4 = \ g, a => + (Tm4 : Con4 -> Ty4 -> Type) + -> (var : (g : _) -> (a : _) -> Var4 g a -> Tm4 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm4 (snoc4 g a) B -> Tm4 g (arr4 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm4 g (arr4 a B) -> Tm4 g a -> Tm4 g B) + -> Tm4 g a + +var4 : {g : _} -> {a : _} -> Var4 g a -> Tm4 g a +var4 = \ x, tm, var4, lam, app => var4 _ _ x + +lam4 : {g : _} -> {a : _} -> {B : _} -> Tm4 (snoc4 g a) B -> Tm4 g (arr4 a B) +lam4 = \ t, tm, var4, lam4, app => lam4 _ _ _ (t tm var4 lam4 app) + +app4 : {g:_}->{a:_}->{B:_} -> Tm4 g (arr4 a B) -> Tm4 g a -> Tm4 g B +app4 = \ t, u, tm, var4, lam4, app4 => app4 _ _ _ (t tm var4 lam4 app4) (u tm var4 lam4 app4) + +v04 : {g:_}->{a:_} -> Tm4 (snoc4 g a) a +v04 = var4 vz4 + +v14 : {g:_}->{a:_}-> {B:_}-> Tm4 (snoc4 (snoc4 g a) B) a +v14 = var4 (vs4 vz4) + +v24 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm4 (snoc4 (snoc4 (snoc4 g a) B) C) a +v24 = var4 (vs4 (vs4 vz4)) + +v34 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm4 (snoc4 (snoc4 (snoc4 (snoc4 g a) B) C) D) a +v34 = var4 (vs4 (vs4 (vs4 vz4))) + +v44 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm4 (snoc4 (snoc4 (snoc4 (snoc4 (snoc4 g a) B) C) D) E) a +v44 = var4 (vs4 (vs4 (vs4 (vs4 vz4)))) + +test4 : {g:_}-> {a:_} -> Tm4 g (arr4 (arr4 a a) (arr4 a a)) +test4 = lam4 (lam4 (app4 v14 (app4 v14 (app4 v14 (app4 v14 (app4 v14 (app4 v14 v04))))))) +Ty5 : Type +Ty5 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty5 : Ty5 +empty5 = \ _, empty, _ => empty + +arr5 : Ty5 -> Ty5 -> Ty5 +arr5 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con5 : Type +Con5 = (Con5 : Type) + ->(nil : Con5) + ->(snoc : Con5 -> Ty5 -> Con5) + -> Con5 + +nil5 : Con5 +nil5 = \ con, nil5, snoc => nil5 + +snoc5 : Con5 -> Ty5 -> Con5 +snoc5 = \ g, a, con, nil5, snoc5 => snoc5 (g con nil5 snoc5) a + +Var5 : Con5 -> Ty5 -> Type +Var5 = \ g, a => + (Var5 : Con5 -> Ty5 -> Type) + -> (vz : (g : _)-> (a : _) -> Var5 (snoc5 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var5 g a -> Var5 (snoc5 g b) a) + -> Var5 g a + +vz5 : {g : _}-> {a : _} -> Var5 (snoc5 g a) a +vz5 = \ var, vz5, vs => vz5 _ _ + +vs5 : {g : _} -> {B : _} -> {a : _} -> Var5 g a -> Var5 (snoc5 g B) a +vs5 = \ x, var, vz5, vs5 => vs5 _ _ _ (x var vz5 vs5) + +Tm5 : Con5 -> Ty5 -> Type +Tm5 = \ g, a => + (Tm5 : Con5 -> Ty5 -> Type) + -> (var : (g : _) -> (a : _) -> Var5 g a -> Tm5 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm5 (snoc5 g a) B -> Tm5 g (arr5 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm5 g (arr5 a B) -> Tm5 g a -> Tm5 g B) + -> Tm5 g a + +var5 : {g : _} -> {a : _} -> Var5 g a -> Tm5 g a +var5 = \ x, tm, var5, lam, app => var5 _ _ x + +lam5 : {g : _} -> {a : _} -> {B : _} -> Tm5 (snoc5 g a) B -> Tm5 g (arr5 a B) +lam5 = \ t, tm, var5, lam5, app => lam5 _ _ _ (t tm var5 lam5 app) + +app5 : {g:_}->{a:_}->{B:_} -> Tm5 g (arr5 a B) -> Tm5 g a -> Tm5 g B +app5 = \ t, u, tm, var5, lam5, app5 => app5 _ _ _ (t tm var5 lam5 app5) (u tm var5 lam5 app5) + +v05 : {g:_}->{a:_} -> Tm5 (snoc5 g a) a +v05 = var5 vz5 + +v15 : {g:_}->{a:_}-> {B:_}-> Tm5 (snoc5 (snoc5 g a) B) a +v15 = var5 (vs5 vz5) + +v25 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm5 (snoc5 (snoc5 (snoc5 g a) B) C) a +v25 = var5 (vs5 (vs5 vz5)) + +v35 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm5 (snoc5 (snoc5 (snoc5 (snoc5 g a) B) C) D) a +v35 = var5 (vs5 (vs5 (vs5 vz5))) + +v45 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm5 (snoc5 (snoc5 (snoc5 (snoc5 (snoc5 g a) B) C) D) E) a +v45 = var5 (vs5 (vs5 (vs5 (vs5 vz5)))) + +test5 : {g:_}-> {a:_} -> Tm5 g (arr5 (arr5 a a) (arr5 a a)) +test5 = lam5 (lam5 (app5 v15 (app5 v15 (app5 v15 (app5 v15 (app5 v15 (app5 v15 v05))))))) +Ty6 : Type +Ty6 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty6 : Ty6 +empty6 = \ _, empty, _ => empty + +arr6 : Ty6 -> Ty6 -> Ty6 +arr6 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con6 : Type +Con6 = (Con6 : Type) + ->(nil : Con6) + ->(snoc : Con6 -> Ty6 -> Con6) + -> Con6 + +nil6 : Con6 +nil6 = \ con, nil6, snoc => nil6 + +snoc6 : Con6 -> Ty6 -> Con6 +snoc6 = \ g, a, con, nil6, snoc6 => snoc6 (g con nil6 snoc6) a + +Var6 : Con6 -> Ty6 -> Type +Var6 = \ g, a => + (Var6 : Con6 -> Ty6 -> Type) + -> (vz : (g : _)-> (a : _) -> Var6 (snoc6 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var6 g a -> Var6 (snoc6 g b) a) + -> Var6 g a + +vz6 : {g : _}-> {a : _} -> Var6 (snoc6 g a) a +vz6 = \ var, vz6, vs => vz6 _ _ + +vs6 : {g : _} -> {B : _} -> {a : _} -> Var6 g a -> Var6 (snoc6 g B) a +vs6 = \ x, var, vz6, vs6 => vs6 _ _ _ (x var vz6 vs6) + +Tm6 : Con6 -> Ty6 -> Type +Tm6 = \ g, a => + (Tm6 : Con6 -> Ty6 -> Type) + -> (var : (g : _) -> (a : _) -> Var6 g a -> Tm6 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm6 (snoc6 g a) B -> Tm6 g (arr6 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm6 g (arr6 a B) -> Tm6 g a -> Tm6 g B) + -> Tm6 g a + +var6 : {g : _} -> {a : _} -> Var6 g a -> Tm6 g a +var6 = \ x, tm, var6, lam, app => var6 _ _ x + +lam6 : {g : _} -> {a : _} -> {B : _} -> Tm6 (snoc6 g a) B -> Tm6 g (arr6 a B) +lam6 = \ t, tm, var6, lam6, app => lam6 _ _ _ (t tm var6 lam6 app) + +app6 : {g:_}->{a:_}->{B:_} -> Tm6 g (arr6 a B) -> Tm6 g a -> Tm6 g B +app6 = \ t, u, tm, var6, lam6, app6 => app6 _ _ _ (t tm var6 lam6 app6) (u tm var6 lam6 app6) + +v06 : {g:_}->{a:_} -> Tm6 (snoc6 g a) a +v06 = var6 vz6 + +v16 : {g:_}->{a:_}-> {B:_}-> Tm6 (snoc6 (snoc6 g a) B) a +v16 = var6 (vs6 vz6) + +v26 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm6 (snoc6 (snoc6 (snoc6 g a) B) C) a +v26 = var6 (vs6 (vs6 vz6)) + +v36 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm6 (snoc6 (snoc6 (snoc6 (snoc6 g a) B) C) D) a +v36 = var6 (vs6 (vs6 (vs6 vz6))) + +v46 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm6 (snoc6 (snoc6 (snoc6 (snoc6 (snoc6 g a) B) C) D) E) a +v46 = var6 (vs6 (vs6 (vs6 (vs6 vz6)))) + +test6 : {g:_}-> {a:_} -> Tm6 g (arr6 (arr6 a a) (arr6 a a)) +test6 = lam6 (lam6 (app6 v16 (app6 v16 (app6 v16 (app6 v16 (app6 v16 (app6 v16 v06))))))) +Ty7 : Type +Ty7 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty7 : Ty7 +empty7 = \ _, empty, _ => empty + +arr7 : Ty7 -> Ty7 -> Ty7 +arr7 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con7 : Type +Con7 = (Con7 : Type) + ->(nil : Con7) + ->(snoc : Con7 -> Ty7 -> Con7) + -> Con7 + +nil7 : Con7 +nil7 = \ con, nil7, snoc => nil7 + +snoc7 : Con7 -> Ty7 -> Con7 +snoc7 = \ g, a, con, nil7, snoc7 => snoc7 (g con nil7 snoc7) a + +Var7 : Con7 -> Ty7 -> Type +Var7 = \ g, a => + (Var7 : Con7 -> Ty7 -> Type) + -> (vz : (g : _)-> (a : _) -> Var7 (snoc7 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var7 g a -> Var7 (snoc7 g b) a) + -> Var7 g a + +vz7 : {g : _}-> {a : _} -> Var7 (snoc7 g a) a +vz7 = \ var, vz7, vs => vz7 _ _ + +vs7 : {g : _} -> {B : _} -> {a : _} -> Var7 g a -> Var7 (snoc7 g B) a +vs7 = \ x, var, vz7, vs7 => vs7 _ _ _ (x var vz7 vs7) + +Tm7 : Con7 -> Ty7 -> Type +Tm7 = \ g, a => + (Tm7 : Con7 -> Ty7 -> Type) + -> (var : (g : _) -> (a : _) -> Var7 g a -> Tm7 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm7 (snoc7 g a) B -> Tm7 g (arr7 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm7 g (arr7 a B) -> Tm7 g a -> Tm7 g B) + -> Tm7 g a + +var7 : {g : _} -> {a : _} -> Var7 g a -> Tm7 g a +var7 = \ x, tm, var7, lam, app => var7 _ _ x + +lam7 : {g : _} -> {a : _} -> {B : _} -> Tm7 (snoc7 g a) B -> Tm7 g (arr7 a B) +lam7 = \ t, tm, var7, lam7, app => lam7 _ _ _ (t tm var7 lam7 app) + +app7 : {g:_}->{a:_}->{B:_} -> Tm7 g (arr7 a B) -> Tm7 g a -> Tm7 g B +app7 = \ t, u, tm, var7, lam7, app7 => app7 _ _ _ (t tm var7 lam7 app7) (u tm var7 lam7 app7) + +v07 : {g:_}->{a:_} -> Tm7 (snoc7 g a) a +v07 = var7 vz7 + +v17 : {g:_}->{a:_}-> {B:_}-> Tm7 (snoc7 (snoc7 g a) B) a +v17 = var7 (vs7 vz7) + +v27 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm7 (snoc7 (snoc7 (snoc7 g a) B) C) a +v27 = var7 (vs7 (vs7 vz7)) + +v37 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm7 (snoc7 (snoc7 (snoc7 (snoc7 g a) B) C) D) a +v37 = var7 (vs7 (vs7 (vs7 vz7))) + +v47 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm7 (snoc7 (snoc7 (snoc7 (snoc7 (snoc7 g a) B) C) D) E) a +v47 = var7 (vs7 (vs7 (vs7 (vs7 vz7)))) + +test7 : {g:_}-> {a:_} -> Tm7 g (arr7 (arr7 a a) (arr7 a a)) +test7 = lam7 (lam7 (app7 v17 (app7 v17 (app7 v17 (app7 v17 (app7 v17 (app7 v17 v07))))))) +Ty8 : Type +Ty8 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty8 : Ty8 +empty8 = \ _, empty, _ => empty + +arr8 : Ty8 -> Ty8 -> Ty8 +arr8 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con8 : Type +Con8 = (Con8 : Type) + ->(nil : Con8) + ->(snoc : Con8 -> Ty8 -> Con8) + -> Con8 + +nil8 : Con8 +nil8 = \ con, nil8, snoc => nil8 + +snoc8 : Con8 -> Ty8 -> Con8 +snoc8 = \ g, a, con, nil8, snoc8 => snoc8 (g con nil8 snoc8) a + +Var8 : Con8 -> Ty8 -> Type +Var8 = \ g, a => + (Var8 : Con8 -> Ty8 -> Type) + -> (vz : (g : _)-> (a : _) -> Var8 (snoc8 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var8 g a -> Var8 (snoc8 g b) a) + -> Var8 g a + +vz8 : {g : _}-> {a : _} -> Var8 (snoc8 g a) a +vz8 = \ var, vz8, vs => vz8 _ _ + +vs8 : {g : _} -> {B : _} -> {a : _} -> Var8 g a -> Var8 (snoc8 g B) a +vs8 = \ x, var, vz8, vs8 => vs8 _ _ _ (x var vz8 vs8) + +Tm8 : Con8 -> Ty8 -> Type +Tm8 = \ g, a => + (Tm8 : Con8 -> Ty8 -> Type) + -> (var : (g : _) -> (a : _) -> Var8 g a -> Tm8 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm8 (snoc8 g a) B -> Tm8 g (arr8 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm8 g (arr8 a B) -> Tm8 g a -> Tm8 g B) + -> Tm8 g a + +var8 : {g : _} -> {a : _} -> Var8 g a -> Tm8 g a +var8 = \ x, tm, var8, lam, app => var8 _ _ x + +lam8 : {g : _} -> {a : _} -> {B : _} -> Tm8 (snoc8 g a) B -> Tm8 g (arr8 a B) +lam8 = \ t, tm, var8, lam8, app => lam8 _ _ _ (t tm var8 lam8 app) + +app8 : {g:_}->{a:_}->{B:_} -> Tm8 g (arr8 a B) -> Tm8 g a -> Tm8 g B +app8 = \ t, u, tm, var8, lam8, app8 => app8 _ _ _ (t tm var8 lam8 app8) (u tm var8 lam8 app8) + +v08 : {g:_}->{a:_} -> Tm8 (snoc8 g a) a +v08 = var8 vz8 + +v18 : {g:_}->{a:_}-> {B:_}-> Tm8 (snoc8 (snoc8 g a) B) a +v18 = var8 (vs8 vz8) + +v28 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm8 (snoc8 (snoc8 (snoc8 g a) B) C) a +v28 = var8 (vs8 (vs8 vz8)) + +v38 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm8 (snoc8 (snoc8 (snoc8 (snoc8 g a) B) C) D) a +v38 = var8 (vs8 (vs8 (vs8 vz8))) + +v48 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm8 (snoc8 (snoc8 (snoc8 (snoc8 (snoc8 g a) B) C) D) E) a +v48 = var8 (vs8 (vs8 (vs8 (vs8 vz8)))) + +test8 : {g:_}-> {a:_} -> Tm8 g (arr8 (arr8 a a) (arr8 a a)) +test8 = lam8 (lam8 (app8 v18 (app8 v18 (app8 v18 (app8 v18 (app8 v18 (app8 v18 v08))))))) +Ty9 : Type +Ty9 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty9 : Ty9 +empty9 = \ _, empty, _ => empty + +arr9 : Ty9 -> Ty9 -> Ty9 +arr9 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con9 : Type +Con9 = (Con9 : Type) + ->(nil : Con9) + ->(snoc : Con9 -> Ty9 -> Con9) + -> Con9 + +nil9 : Con9 +nil9 = \ con, nil9, snoc => nil9 + +snoc9 : Con9 -> Ty9 -> Con9 +snoc9 = \ g, a, con, nil9, snoc9 => snoc9 (g con nil9 snoc9) a + +Var9 : Con9 -> Ty9 -> Type +Var9 = \ g, a => + (Var9 : Con9 -> Ty9 -> Type) + -> (vz : (g : _)-> (a : _) -> Var9 (snoc9 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var9 g a -> Var9 (snoc9 g b) a) + -> Var9 g a + +vz9 : {g : _}-> {a : _} -> Var9 (snoc9 g a) a +vz9 = \ var, vz9, vs => vz9 _ _ + +vs9 : {g : _} -> {B : _} -> {a : _} -> Var9 g a -> Var9 (snoc9 g B) a +vs9 = \ x, var, vz9, vs9 => vs9 _ _ _ (x var vz9 vs9) + +Tm9 : Con9 -> Ty9 -> Type +Tm9 = \ g, a => + (Tm9 : Con9 -> Ty9 -> Type) + -> (var : (g : _) -> (a : _) -> Var9 g a -> Tm9 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm9 (snoc9 g a) B -> Tm9 g (arr9 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm9 g (arr9 a B) -> Tm9 g a -> Tm9 g B) + -> Tm9 g a + +var9 : {g : _} -> {a : _} -> Var9 g a -> Tm9 g a +var9 = \ x, tm, var9, lam, app => var9 _ _ x + +lam9 : {g : _} -> {a : _} -> {B : _} -> Tm9 (snoc9 g a) B -> Tm9 g (arr9 a B) +lam9 = \ t, tm, var9, lam9, app => lam9 _ _ _ (t tm var9 lam9 app) + +app9 : {g:_}->{a:_}->{B:_} -> Tm9 g (arr9 a B) -> Tm9 g a -> Tm9 g B +app9 = \ t, u, tm, var9, lam9, app9 => app9 _ _ _ (t tm var9 lam9 app9) (u tm var9 lam9 app9) + +v09 : {g:_}->{a:_} -> Tm9 (snoc9 g a) a +v09 = var9 vz9 + +v19 : {g:_}->{a:_}-> {B:_}-> Tm9 (snoc9 (snoc9 g a) B) a +v19 = var9 (vs9 vz9) + +v29 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm9 (snoc9 (snoc9 (snoc9 g a) B) C) a +v29 = var9 (vs9 (vs9 vz9)) + +v39 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm9 (snoc9 (snoc9 (snoc9 (snoc9 g a) B) C) D) a +v39 = var9 (vs9 (vs9 (vs9 vz9))) + +v49 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm9 (snoc9 (snoc9 (snoc9 (snoc9 (snoc9 g a) B) C) D) E) a +v49 = var9 (vs9 (vs9 (vs9 (vs9 vz9)))) + +test9 : {g:_}-> {a:_} -> Tm9 g (arr9 (arr9 a a) (arr9 a a)) +test9 = lam9 (lam9 (app9 v19 (app9 v19 (app9 v19 (app9 v19 (app9 v19 (app9 v19 v09))))))) +Ty10 : Type +Ty10 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty10 : Ty10 +empty10 = \ _, empty, _ => empty + +arr10 : Ty10 -> Ty10 -> Ty10 +arr10 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con10 : Type +Con10 = (Con10 : Type) + ->(nil : Con10) + ->(snoc : Con10 -> Ty10 -> Con10) + -> Con10 + +nil10 : Con10 +nil10 = \ con, nil10, snoc => nil10 + +snoc10 : Con10 -> Ty10 -> Con10 +snoc10 = \ g, a, con, nil10, snoc10 => snoc10 (g con nil10 snoc10) a + +Var10 : Con10 -> Ty10 -> Type +Var10 = \ g, a => + (Var10 : Con10 -> Ty10 -> Type) + -> (vz : (g : _)-> (a : _) -> Var10 (snoc10 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var10 g a -> Var10 (snoc10 g b) a) + -> Var10 g a + +vz10 : {g : _}-> {a : _} -> Var10 (snoc10 g a) a +vz10 = \ var, vz10, vs => vz10 _ _ + +vs10 : {g : _} -> {B : _} -> {a : _} -> Var10 g a -> Var10 (snoc10 g B) a +vs10 = \ x, var, vz10, vs10 => vs10 _ _ _ (x var vz10 vs10) + +Tm10 : Con10 -> Ty10 -> Type +Tm10 = \ g, a => + (Tm10 : Con10 -> Ty10 -> Type) + -> (var : (g : _) -> (a : _) -> Var10 g a -> Tm10 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm10 (snoc10 g a) B -> Tm10 g (arr10 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm10 g (arr10 a B) -> Tm10 g a -> Tm10 g B) + -> Tm10 g a + +var10 : {g : _} -> {a : _} -> Var10 g a -> Tm10 g a +var10 = \ x, tm, var10, lam, app => var10 _ _ x + +lam10 : {g : _} -> {a : _} -> {B : _} -> Tm10 (snoc10 g a) B -> Tm10 g (arr10 a B) +lam10 = \ t, tm, var10, lam10, app => lam10 _ _ _ (t tm var10 lam10 app) + +app10 : {g:_}->{a:_}->{B:_} -> Tm10 g (arr10 a B) -> Tm10 g a -> Tm10 g B +app10 = \ t, u, tm, var10, lam10, app10 => app10 _ _ _ (t tm var10 lam10 app10) (u tm var10 lam10 app10) + +v010 : {g:_}->{a:_} -> Tm10 (snoc10 g a) a +v010 = var10 vz10 + +v110 : {g:_}->{a:_}-> {B:_}-> Tm10 (snoc10 (snoc10 g a) B) a +v110 = var10 (vs10 vz10) + +v210 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm10 (snoc10 (snoc10 (snoc10 g a) B) C) a +v210 = var10 (vs10 (vs10 vz10)) + +v310 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm10 (snoc10 (snoc10 (snoc10 (snoc10 g a) B) C) D) a +v310 = var10 (vs10 (vs10 (vs10 vz10))) + +v410 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm10 (snoc10 (snoc10 (snoc10 (snoc10 (snoc10 g a) B) C) D) E) a +v410 = var10 (vs10 (vs10 (vs10 (vs10 vz10)))) + +test10 : {g:_}-> {a:_} -> Tm10 g (arr10 (arr10 a a) (arr10 a a)) +test10 = lam10 (lam10 (app10 v110 (app10 v110 (app10 v110 (app10 v110 (app10 v110 (app10 v110 v010))))))) +Ty11 : Type +Ty11 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty11 : Ty11 +empty11 = \ _, empty, _ => empty + +arr11 : Ty11 -> Ty11 -> Ty11 +arr11 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con11 : Type +Con11 = (Con11 : Type) + ->(nil : Con11) + ->(snoc : Con11 -> Ty11 -> Con11) + -> Con11 + +nil11 : Con11 +nil11 = \ con, nil11, snoc => nil11 + +snoc11 : Con11 -> Ty11 -> Con11 +snoc11 = \ g, a, con, nil11, snoc11 => snoc11 (g con nil11 snoc11) a + +Var11 : Con11 -> Ty11 -> Type +Var11 = \ g, a => + (Var11 : Con11 -> Ty11 -> Type) + -> (vz : (g : _)-> (a : _) -> Var11 (snoc11 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var11 g a -> Var11 (snoc11 g b) a) + -> Var11 g a + +vz11 : {g : _}-> {a : _} -> Var11 (snoc11 g a) a +vz11 = \ var, vz11, vs => vz11 _ _ + +vs11 : {g : _} -> {B : _} -> {a : _} -> Var11 g a -> Var11 (snoc11 g B) a +vs11 = \ x, var, vz11, vs11 => vs11 _ _ _ (x var vz11 vs11) + +Tm11 : Con11 -> Ty11 -> Type +Tm11 = \ g, a => + (Tm11 : Con11 -> Ty11 -> Type) + -> (var : (g : _) -> (a : _) -> Var11 g a -> Tm11 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm11 (snoc11 g a) B -> Tm11 g (arr11 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm11 g (arr11 a B) -> Tm11 g a -> Tm11 g B) + -> Tm11 g a + +var11 : {g : _} -> {a : _} -> Var11 g a -> Tm11 g a +var11 = \ x, tm, var11, lam, app => var11 _ _ x + +lam11 : {g : _} -> {a : _} -> {B : _} -> Tm11 (snoc11 g a) B -> Tm11 g (arr11 a B) +lam11 = \ t, tm, var11, lam11, app => lam11 _ _ _ (t tm var11 lam11 app) + +app11 : {g:_}->{a:_}->{B:_} -> Tm11 g (arr11 a B) -> Tm11 g a -> Tm11 g B +app11 = \ t, u, tm, var11, lam11, app11 => app11 _ _ _ (t tm var11 lam11 app11) (u tm var11 lam11 app11) + +v011 : {g:_}->{a:_} -> Tm11 (snoc11 g a) a +v011 = var11 vz11 + +v111 : {g:_}->{a:_}-> {B:_}-> Tm11 (snoc11 (snoc11 g a) B) a +v111 = var11 (vs11 vz11) + +v211 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm11 (snoc11 (snoc11 (snoc11 g a) B) C) a +v211 = var11 (vs11 (vs11 vz11)) + +v311 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm11 (snoc11 (snoc11 (snoc11 (snoc11 g a) B) C) D) a +v311 = var11 (vs11 (vs11 (vs11 vz11))) + +v411 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm11 (snoc11 (snoc11 (snoc11 (snoc11 (snoc11 g a) B) C) D) E) a +v411 = var11 (vs11 (vs11 (vs11 (vs11 vz11)))) + +test11 : {g:_}-> {a:_} -> Tm11 g (arr11 (arr11 a a) (arr11 a a)) +test11 = lam11 (lam11 (app11 v111 (app11 v111 (app11 v111 (app11 v111 (app11 v111 (app11 v111 v011))))))) +Ty12 : Type +Ty12 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty12 : Ty12 +empty12 = \ _, empty, _ => empty + +arr12 : Ty12 -> Ty12 -> Ty12 +arr12 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con12 : Type +Con12 = (Con12 : Type) + ->(nil : Con12) + ->(snoc : Con12 -> Ty12 -> Con12) + -> Con12 + +nil12 : Con12 +nil12 = \ con, nil12, snoc => nil12 + +snoc12 : Con12 -> Ty12 -> Con12 +snoc12 = \ g, a, con, nil12, snoc12 => snoc12 (g con nil12 snoc12) a + +Var12 : Con12 -> Ty12 -> Type +Var12 = \ g, a => + (Var12 : Con12 -> Ty12 -> Type) + -> (vz : (g : _)-> (a : _) -> Var12 (snoc12 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var12 g a -> Var12 (snoc12 g b) a) + -> Var12 g a + +vz12 : {g : _}-> {a : _} -> Var12 (snoc12 g a) a +vz12 = \ var, vz12, vs => vz12 _ _ + +vs12 : {g : _} -> {B : _} -> {a : _} -> Var12 g a -> Var12 (snoc12 g B) a +vs12 = \ x, var, vz12, vs12 => vs12 _ _ _ (x var vz12 vs12) + +Tm12 : Con12 -> Ty12 -> Type +Tm12 = \ g, a => + (Tm12 : Con12 -> Ty12 -> Type) + -> (var : (g : _) -> (a : _) -> Var12 g a -> Tm12 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm12 (snoc12 g a) B -> Tm12 g (arr12 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm12 g (arr12 a B) -> Tm12 g a -> Tm12 g B) + -> Tm12 g a + +var12 : {g : _} -> {a : _} -> Var12 g a -> Tm12 g a +var12 = \ x, tm, var12, lam, app => var12 _ _ x + +lam12 : {g : _} -> {a : _} -> {B : _} -> Tm12 (snoc12 g a) B -> Tm12 g (arr12 a B) +lam12 = \ t, tm, var12, lam12, app => lam12 _ _ _ (t tm var12 lam12 app) + +app12 : {g:_}->{a:_}->{B:_} -> Tm12 g (arr12 a B) -> Tm12 g a -> Tm12 g B +app12 = \ t, u, tm, var12, lam12, app12 => app12 _ _ _ (t tm var12 lam12 app12) (u tm var12 lam12 app12) + +v012 : {g:_}->{a:_} -> Tm12 (snoc12 g a) a +v012 = var12 vz12 + +v112 : {g:_}->{a:_}-> {B:_}-> Tm12 (snoc12 (snoc12 g a) B) a +v112 = var12 (vs12 vz12) + +v212 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm12 (snoc12 (snoc12 (snoc12 g a) B) C) a +v212 = var12 (vs12 (vs12 vz12)) + +v312 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm12 (snoc12 (snoc12 (snoc12 (snoc12 g a) B) C) D) a +v312 = var12 (vs12 (vs12 (vs12 vz12))) + +v412 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm12 (snoc12 (snoc12 (snoc12 (snoc12 (snoc12 g a) B) C) D) E) a +v412 = var12 (vs12 (vs12 (vs12 (vs12 vz12)))) + +test12 : {g:_}-> {a:_} -> Tm12 g (arr12 (arr12 a a) (arr12 a a)) +test12 = lam12 (lam12 (app12 v112 (app12 v112 (app12 v112 (app12 v112 (app12 v112 (app12 v112 v012))))))) +Ty13 : Type +Ty13 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty13 : Ty13 +empty13 = \ _, empty, _ => empty + +arr13 : Ty13 -> Ty13 -> Ty13 +arr13 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con13 : Type +Con13 = (Con13 : Type) + ->(nil : Con13) + ->(snoc : Con13 -> Ty13 -> Con13) + -> Con13 + +nil13 : Con13 +nil13 = \ con, nil13, snoc => nil13 + +snoc13 : Con13 -> Ty13 -> Con13 +snoc13 = \ g, a, con, nil13, snoc13 => snoc13 (g con nil13 snoc13) a + +Var13 : Con13 -> Ty13 -> Type +Var13 = \ g, a => + (Var13 : Con13 -> Ty13 -> Type) + -> (vz : (g : _)-> (a : _) -> Var13 (snoc13 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var13 g a -> Var13 (snoc13 g b) a) + -> Var13 g a + +vz13 : {g : _}-> {a : _} -> Var13 (snoc13 g a) a +vz13 = \ var, vz13, vs => vz13 _ _ + +vs13 : {g : _} -> {B : _} -> {a : _} -> Var13 g a -> Var13 (snoc13 g B) a +vs13 = \ x, var, vz13, vs13 => vs13 _ _ _ (x var vz13 vs13) + +Tm13 : Con13 -> Ty13 -> Type +Tm13 = \ g, a => + (Tm13 : Con13 -> Ty13 -> Type) + -> (var : (g : _) -> (a : _) -> Var13 g a -> Tm13 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm13 (snoc13 g a) B -> Tm13 g (arr13 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm13 g (arr13 a B) -> Tm13 g a -> Tm13 g B) + -> Tm13 g a + +var13 : {g : _} -> {a : _} -> Var13 g a -> Tm13 g a +var13 = \ x, tm, var13, lam, app => var13 _ _ x + +lam13 : {g : _} -> {a : _} -> {B : _} -> Tm13 (snoc13 g a) B -> Tm13 g (arr13 a B) +lam13 = \ t, tm, var13, lam13, app => lam13 _ _ _ (t tm var13 lam13 app) + +app13 : {g:_}->{a:_}->{B:_} -> Tm13 g (arr13 a B) -> Tm13 g a -> Tm13 g B +app13 = \ t, u, tm, var13, lam13, app13 => app13 _ _ _ (t tm var13 lam13 app13) (u tm var13 lam13 app13) + +v013 : {g:_}->{a:_} -> Tm13 (snoc13 g a) a +v013 = var13 vz13 + +v113 : {g:_}->{a:_}-> {B:_}-> Tm13 (snoc13 (snoc13 g a) B) a +v113 = var13 (vs13 vz13) + +v213 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm13 (snoc13 (snoc13 (snoc13 g a) B) C) a +v213 = var13 (vs13 (vs13 vz13)) + +v313 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm13 (snoc13 (snoc13 (snoc13 (snoc13 g a) B) C) D) a +v313 = var13 (vs13 (vs13 (vs13 vz13))) + +v413 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm13 (snoc13 (snoc13 (snoc13 (snoc13 (snoc13 g a) B) C) D) E) a +v413 = var13 (vs13 (vs13 (vs13 (vs13 vz13)))) + +test13 : {g:_}-> {a:_} -> Tm13 g (arr13 (arr13 a a) (arr13 a a)) +test13 = lam13 (lam13 (app13 v113 (app13 v113 (app13 v113 (app13 v113 (app13 v113 (app13 v113 v013))))))) +Ty14 : Type +Ty14 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty14 : Ty14 +empty14 = \ _, empty, _ => empty + +arr14 : Ty14 -> Ty14 -> Ty14 +arr14 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con14 : Type +Con14 = (Con14 : Type) + ->(nil : Con14) + ->(snoc : Con14 -> Ty14 -> Con14) + -> Con14 + +nil14 : Con14 +nil14 = \ con, nil14, snoc => nil14 + +snoc14 : Con14 -> Ty14 -> Con14 +snoc14 = \ g, a, con, nil14, snoc14 => snoc14 (g con nil14 snoc14) a + +Var14 : Con14 -> Ty14 -> Type +Var14 = \ g, a => + (Var14 : Con14 -> Ty14 -> Type) + -> (vz : (g : _)-> (a : _) -> Var14 (snoc14 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var14 g a -> Var14 (snoc14 g b) a) + -> Var14 g a + +vz14 : {g : _}-> {a : _} -> Var14 (snoc14 g a) a +vz14 = \ var, vz14, vs => vz14 _ _ + +vs14 : {g : _} -> {B : _} -> {a : _} -> Var14 g a -> Var14 (snoc14 g B) a +vs14 = \ x, var, vz14, vs14 => vs14 _ _ _ (x var vz14 vs14) + +Tm14 : Con14 -> Ty14 -> Type +Tm14 = \ g, a => + (Tm14 : Con14 -> Ty14 -> Type) + -> (var : (g : _) -> (a : _) -> Var14 g a -> Tm14 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm14 (snoc14 g a) B -> Tm14 g (arr14 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm14 g (arr14 a B) -> Tm14 g a -> Tm14 g B) + -> Tm14 g a + +var14 : {g : _} -> {a : _} -> Var14 g a -> Tm14 g a +var14 = \ x, tm, var14, lam, app => var14 _ _ x + +lam14 : {g : _} -> {a : _} -> {B : _} -> Tm14 (snoc14 g a) B -> Tm14 g (arr14 a B) +lam14 = \ t, tm, var14, lam14, app => lam14 _ _ _ (t tm var14 lam14 app) + +app14 : {g:_}->{a:_}->{B:_} -> Tm14 g (arr14 a B) -> Tm14 g a -> Tm14 g B +app14 = \ t, u, tm, var14, lam14, app14 => app14 _ _ _ (t tm var14 lam14 app14) (u tm var14 lam14 app14) + +v014 : {g:_}->{a:_} -> Tm14 (snoc14 g a) a +v014 = var14 vz14 + +v114 : {g:_}->{a:_}-> {B:_}-> Tm14 (snoc14 (snoc14 g a) B) a +v114 = var14 (vs14 vz14) + +v214 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm14 (snoc14 (snoc14 (snoc14 g a) B) C) a +v214 = var14 (vs14 (vs14 vz14)) + +v314 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm14 (snoc14 (snoc14 (snoc14 (snoc14 g a) B) C) D) a +v314 = var14 (vs14 (vs14 (vs14 vz14))) + +v414 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm14 (snoc14 (snoc14 (snoc14 (snoc14 (snoc14 g a) B) C) D) E) a +v414 = var14 (vs14 (vs14 (vs14 (vs14 vz14)))) + +test14 : {g:_}-> {a:_} -> Tm14 g (arr14 (arr14 a a) (arr14 a a)) +test14 = lam14 (lam14 (app14 v114 (app14 v114 (app14 v114 (app14 v114 (app14 v114 (app14 v114 v014))))))) +Ty15 : Type +Ty15 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty15 : Ty15 +empty15 = \ _, empty, _ => empty + +arr15 : Ty15 -> Ty15 -> Ty15 +arr15 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con15 : Type +Con15 = (Con15 : Type) + ->(nil : Con15) + ->(snoc : Con15 -> Ty15 -> Con15) + -> Con15 + +nil15 : Con15 +nil15 = \ con, nil15, snoc => nil15 + +snoc15 : Con15 -> Ty15 -> Con15 +snoc15 = \ g, a, con, nil15, snoc15 => snoc15 (g con nil15 snoc15) a + +Var15 : Con15 -> Ty15 -> Type +Var15 = \ g, a => + (Var15 : Con15 -> Ty15 -> Type) + -> (vz : (g : _)-> (a : _) -> Var15 (snoc15 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var15 g a -> Var15 (snoc15 g b) a) + -> Var15 g a + +vz15 : {g : _}-> {a : _} -> Var15 (snoc15 g a) a +vz15 = \ var, vz15, vs => vz15 _ _ + +vs15 : {g : _} -> {B : _} -> {a : _} -> Var15 g a -> Var15 (snoc15 g B) a +vs15 = \ x, var, vz15, vs15 => vs15 _ _ _ (x var vz15 vs15) + +Tm15 : Con15 -> Ty15 -> Type +Tm15 = \ g, a => + (Tm15 : Con15 -> Ty15 -> Type) + -> (var : (g : _) -> (a : _) -> Var15 g a -> Tm15 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm15 (snoc15 g a) B -> Tm15 g (arr15 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm15 g (arr15 a B) -> Tm15 g a -> Tm15 g B) + -> Tm15 g a + +var15 : {g : _} -> {a : _} -> Var15 g a -> Tm15 g a +var15 = \ x, tm, var15, lam, app => var15 _ _ x + +lam15 : {g : _} -> {a : _} -> {B : _} -> Tm15 (snoc15 g a) B -> Tm15 g (arr15 a B) +lam15 = \ t, tm, var15, lam15, app => lam15 _ _ _ (t tm var15 lam15 app) + +app15 : {g:_}->{a:_}->{B:_} -> Tm15 g (arr15 a B) -> Tm15 g a -> Tm15 g B +app15 = \ t, u, tm, var15, lam15, app15 => app15 _ _ _ (t tm var15 lam15 app15) (u tm var15 lam15 app15) + +v015 : {g:_}->{a:_} -> Tm15 (snoc15 g a) a +v015 = var15 vz15 + +v115 : {g:_}->{a:_}-> {B:_}-> Tm15 (snoc15 (snoc15 g a) B) a +v115 = var15 (vs15 vz15) + +v215 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm15 (snoc15 (snoc15 (snoc15 g a) B) C) a +v215 = var15 (vs15 (vs15 vz15)) + +v315 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm15 (snoc15 (snoc15 (snoc15 (snoc15 g a) B) C) D) a +v315 = var15 (vs15 (vs15 (vs15 vz15))) + +v415 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm15 (snoc15 (snoc15 (snoc15 (snoc15 (snoc15 g a) B) C) D) E) a +v415 = var15 (vs15 (vs15 (vs15 (vs15 vz15)))) + +test15 : {g:_}-> {a:_} -> Tm15 g (arr15 (arr15 a a) (arr15 a a)) +test15 = lam15 (lam15 (app15 v115 (app15 v115 (app15 v115 (app15 v115 (app15 v115 (app15 v115 v015))))))) +Ty16 : Type +Ty16 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty16 : Ty16 +empty16 = \ _, empty, _ => empty + +arr16 : Ty16 -> Ty16 -> Ty16 +arr16 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con16 : Type +Con16 = (Con16 : Type) + ->(nil : Con16) + ->(snoc : Con16 -> Ty16 -> Con16) + -> Con16 + +nil16 : Con16 +nil16 = \ con, nil16, snoc => nil16 + +snoc16 : Con16 -> Ty16 -> Con16 +snoc16 = \ g, a, con, nil16, snoc16 => snoc16 (g con nil16 snoc16) a + +Var16 : Con16 -> Ty16 -> Type +Var16 = \ g, a => + (Var16 : Con16 -> Ty16 -> Type) + -> (vz : (g : _)-> (a : _) -> Var16 (snoc16 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var16 g a -> Var16 (snoc16 g b) a) + -> Var16 g a + +vz16 : {g : _}-> {a : _} -> Var16 (snoc16 g a) a +vz16 = \ var, vz16, vs => vz16 _ _ + +vs16 : {g : _} -> {B : _} -> {a : _} -> Var16 g a -> Var16 (snoc16 g B) a +vs16 = \ x, var, vz16, vs16 => vs16 _ _ _ (x var vz16 vs16) + +Tm16 : Con16 -> Ty16 -> Type +Tm16 = \ g, a => + (Tm16 : Con16 -> Ty16 -> Type) + -> (var : (g : _) -> (a : _) -> Var16 g a -> Tm16 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm16 (snoc16 g a) B -> Tm16 g (arr16 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm16 g (arr16 a B) -> Tm16 g a -> Tm16 g B) + -> Tm16 g a + +var16 : {g : _} -> {a : _} -> Var16 g a -> Tm16 g a +var16 = \ x, tm, var16, lam, app => var16 _ _ x + +lam16 : {g : _} -> {a : _} -> {B : _} -> Tm16 (snoc16 g a) B -> Tm16 g (arr16 a B) +lam16 = \ t, tm, var16, lam16, app => lam16 _ _ _ (t tm var16 lam16 app) + +app16 : {g:_}->{a:_}->{B:_} -> Tm16 g (arr16 a B) -> Tm16 g a -> Tm16 g B +app16 = \ t, u, tm, var16, lam16, app16 => app16 _ _ _ (t tm var16 lam16 app16) (u tm var16 lam16 app16) + +v016 : {g:_}->{a:_} -> Tm16 (snoc16 g a) a +v016 = var16 vz16 + +v116 : {g:_}->{a:_}-> {B:_}-> Tm16 (snoc16 (snoc16 g a) B) a +v116 = var16 (vs16 vz16) + +v216 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm16 (snoc16 (snoc16 (snoc16 g a) B) C) a +v216 = var16 (vs16 (vs16 vz16)) + +v316 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm16 (snoc16 (snoc16 (snoc16 (snoc16 g a) B) C) D) a +v316 = var16 (vs16 (vs16 (vs16 vz16))) + +v416 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm16 (snoc16 (snoc16 (snoc16 (snoc16 (snoc16 g a) B) C) D) E) a +v416 = var16 (vs16 (vs16 (vs16 (vs16 vz16)))) + +test16 : {g:_}-> {a:_} -> Tm16 g (arr16 (arr16 a a) (arr16 a a)) +test16 = lam16 (lam16 (app16 v116 (app16 v116 (app16 v116 (app16 v116 (app16 v116 (app16 v116 v016))))))) +Ty17 : Type +Ty17 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty17 : Ty17 +empty17 = \ _, empty, _ => empty + +arr17 : Ty17 -> Ty17 -> Ty17 +arr17 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con17 : Type +Con17 = (Con17 : Type) + ->(nil : Con17) + ->(snoc : Con17 -> Ty17 -> Con17) + -> Con17 + +nil17 : Con17 +nil17 = \ con, nil17, snoc => nil17 + +snoc17 : Con17 -> Ty17 -> Con17 +snoc17 = \ g, a, con, nil17, snoc17 => snoc17 (g con nil17 snoc17) a + +Var17 : Con17 -> Ty17 -> Type +Var17 = \ g, a => + (Var17 : Con17 -> Ty17 -> Type) + -> (vz : (g : _)-> (a : _) -> Var17 (snoc17 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var17 g a -> Var17 (snoc17 g b) a) + -> Var17 g a + +vz17 : {g : _}-> {a : _} -> Var17 (snoc17 g a) a +vz17 = \ var, vz17, vs => vz17 _ _ + +vs17 : {g : _} -> {B : _} -> {a : _} -> Var17 g a -> Var17 (snoc17 g B) a +vs17 = \ x, var, vz17, vs17 => vs17 _ _ _ (x var vz17 vs17) + +Tm17 : Con17 -> Ty17 -> Type +Tm17 = \ g, a => + (Tm17 : Con17 -> Ty17 -> Type) + -> (var : (g : _) -> (a : _) -> Var17 g a -> Tm17 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm17 (snoc17 g a) B -> Tm17 g (arr17 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm17 g (arr17 a B) -> Tm17 g a -> Tm17 g B) + -> Tm17 g a + +var17 : {g : _} -> {a : _} -> Var17 g a -> Tm17 g a +var17 = \ x, tm, var17, lam, app => var17 _ _ x + +lam17 : {g : _} -> {a : _} -> {B : _} -> Tm17 (snoc17 g a) B -> Tm17 g (arr17 a B) +lam17 = \ t, tm, var17, lam17, app => lam17 _ _ _ (t tm var17 lam17 app) + +app17 : {g:_}->{a:_}->{B:_} -> Tm17 g (arr17 a B) -> Tm17 g a -> Tm17 g B +app17 = \ t, u, tm, var17, lam17, app17 => app17 _ _ _ (t tm var17 lam17 app17) (u tm var17 lam17 app17) + +v017 : {g:_}->{a:_} -> Tm17 (snoc17 g a) a +v017 = var17 vz17 + +v117 : {g:_}->{a:_}-> {B:_}-> Tm17 (snoc17 (snoc17 g a) B) a +v117 = var17 (vs17 vz17) + +v217 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm17 (snoc17 (snoc17 (snoc17 g a) B) C) a +v217 = var17 (vs17 (vs17 vz17)) + +v317 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm17 (snoc17 (snoc17 (snoc17 (snoc17 g a) B) C) D) a +v317 = var17 (vs17 (vs17 (vs17 vz17))) + +v417 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm17 (snoc17 (snoc17 (snoc17 (snoc17 (snoc17 g a) B) C) D) E) a +v417 = var17 (vs17 (vs17 (vs17 (vs17 vz17)))) + +test17 : {g:_}-> {a:_} -> Tm17 g (arr17 (arr17 a a) (arr17 a a)) +test17 = lam17 (lam17 (app17 v117 (app17 v117 (app17 v117 (app17 v117 (app17 v117 (app17 v117 v017))))))) +Ty18 : Type +Ty18 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty18 : Ty18 +empty18 = \ _, empty, _ => empty + +arr18 : Ty18 -> Ty18 -> Ty18 +arr18 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con18 : Type +Con18 = (Con18 : Type) + ->(nil : Con18) + ->(snoc : Con18 -> Ty18 -> Con18) + -> Con18 + +nil18 : Con18 +nil18 = \ con, nil18, snoc => nil18 + +snoc18 : Con18 -> Ty18 -> Con18 +snoc18 = \ g, a, con, nil18, snoc18 => snoc18 (g con nil18 snoc18) a + +Var18 : Con18 -> Ty18 -> Type +Var18 = \ g, a => + (Var18 : Con18 -> Ty18 -> Type) + -> (vz : (g : _)-> (a : _) -> Var18 (snoc18 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var18 g a -> Var18 (snoc18 g b) a) + -> Var18 g a + +vz18 : {g : _}-> {a : _} -> Var18 (snoc18 g a) a +vz18 = \ var, vz18, vs => vz18 _ _ + +vs18 : {g : _} -> {B : _} -> {a : _} -> Var18 g a -> Var18 (snoc18 g B) a +vs18 = \ x, var, vz18, vs18 => vs18 _ _ _ (x var vz18 vs18) + +Tm18 : Con18 -> Ty18 -> Type +Tm18 = \ g, a => + (Tm18 : Con18 -> Ty18 -> Type) + -> (var : (g : _) -> (a : _) -> Var18 g a -> Tm18 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm18 (snoc18 g a) B -> Tm18 g (arr18 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm18 g (arr18 a B) -> Tm18 g a -> Tm18 g B) + -> Tm18 g a + +var18 : {g : _} -> {a : _} -> Var18 g a -> Tm18 g a +var18 = \ x, tm, var18, lam, app => var18 _ _ x + +lam18 : {g : _} -> {a : _} -> {B : _} -> Tm18 (snoc18 g a) B -> Tm18 g (arr18 a B) +lam18 = \ t, tm, var18, lam18, app => lam18 _ _ _ (t tm var18 lam18 app) + +app18 : {g:_}->{a:_}->{B:_} -> Tm18 g (arr18 a B) -> Tm18 g a -> Tm18 g B +app18 = \ t, u, tm, var18, lam18, app18 => app18 _ _ _ (t tm var18 lam18 app18) (u tm var18 lam18 app18) + +v018 : {g:_}->{a:_} -> Tm18 (snoc18 g a) a +v018 = var18 vz18 + +v118 : {g:_}->{a:_}-> {B:_}-> Tm18 (snoc18 (snoc18 g a) B) a +v118 = var18 (vs18 vz18) + +v218 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm18 (snoc18 (snoc18 (snoc18 g a) B) C) a +v218 = var18 (vs18 (vs18 vz18)) + +v318 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm18 (snoc18 (snoc18 (snoc18 (snoc18 g a) B) C) D) a +v318 = var18 (vs18 (vs18 (vs18 vz18))) + +v418 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm18 (snoc18 (snoc18 (snoc18 (snoc18 (snoc18 g a) B) C) D) E) a +v418 = var18 (vs18 (vs18 (vs18 (vs18 vz18)))) + +test18 : {g:_}-> {a:_} -> Tm18 g (arr18 (arr18 a a) (arr18 a a)) +test18 = lam18 (lam18 (app18 v118 (app18 v118 (app18 v118 (app18 v118 (app18 v118 (app18 v118 v018))))))) +Ty19 : Type +Ty19 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty19 : Ty19 +empty19 = \ _, empty, _ => empty + +arr19 : Ty19 -> Ty19 -> Ty19 +arr19 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con19 : Type +Con19 = (Con19 : Type) + ->(nil : Con19) + ->(snoc : Con19 -> Ty19 -> Con19) + -> Con19 + +nil19 : Con19 +nil19 = \ con, nil19, snoc => nil19 + +snoc19 : Con19 -> Ty19 -> Con19 +snoc19 = \ g, a, con, nil19, snoc19 => snoc19 (g con nil19 snoc19) a + +Var19 : Con19 -> Ty19 -> Type +Var19 = \ g, a => + (Var19 : Con19 -> Ty19 -> Type) + -> (vz : (g : _)-> (a : _) -> Var19 (snoc19 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var19 g a -> Var19 (snoc19 g b) a) + -> Var19 g a + +vz19 : {g : _}-> {a : _} -> Var19 (snoc19 g a) a +vz19 = \ var, vz19, vs => vz19 _ _ + +vs19 : {g : _} -> {B : _} -> {a : _} -> Var19 g a -> Var19 (snoc19 g B) a +vs19 = \ x, var, vz19, vs19 => vs19 _ _ _ (x var vz19 vs19) + +Tm19 : Con19 -> Ty19 -> Type +Tm19 = \ g, a => + (Tm19 : Con19 -> Ty19 -> Type) + -> (var : (g : _) -> (a : _) -> Var19 g a -> Tm19 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm19 (snoc19 g a) B -> Tm19 g (arr19 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm19 g (arr19 a B) -> Tm19 g a -> Tm19 g B) + -> Tm19 g a + +var19 : {g : _} -> {a : _} -> Var19 g a -> Tm19 g a +var19 = \ x, tm, var19, lam, app => var19 _ _ x + +lam19 : {g : _} -> {a : _} -> {B : _} -> Tm19 (snoc19 g a) B -> Tm19 g (arr19 a B) +lam19 = \ t, tm, var19, lam19, app => lam19 _ _ _ (t tm var19 lam19 app) + +app19 : {g:_}->{a:_}->{B:_} -> Tm19 g (arr19 a B) -> Tm19 g a -> Tm19 g B +app19 = \ t, u, tm, var19, lam19, app19 => app19 _ _ _ (t tm var19 lam19 app19) (u tm var19 lam19 app19) + +v019 : {g:_}->{a:_} -> Tm19 (snoc19 g a) a +v019 = var19 vz19 + +v119 : {g:_}->{a:_}-> {B:_}-> Tm19 (snoc19 (snoc19 g a) B) a +v119 = var19 (vs19 vz19) + +v219 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm19 (snoc19 (snoc19 (snoc19 g a) B) C) a +v219 = var19 (vs19 (vs19 vz19)) + +v319 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm19 (snoc19 (snoc19 (snoc19 (snoc19 g a) B) C) D) a +v319 = var19 (vs19 (vs19 (vs19 vz19))) + +v419 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm19 (snoc19 (snoc19 (snoc19 (snoc19 (snoc19 g a) B) C) D) E) a +v419 = var19 (vs19 (vs19 (vs19 (vs19 vz19)))) + +test19 : {g:_}-> {a:_} -> Tm19 g (arr19 (arr19 a a) (arr19 a a)) +test19 = lam19 (lam19 (app19 v119 (app19 v119 (app19 v119 (app19 v119 (app19 v119 (app19 v119 v019))))))) +Ty20 : Type +Ty20 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty20 : Ty20 +empty20 = \ _, empty, _ => empty + +arr20 : Ty20 -> Ty20 -> Ty20 +arr20 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con20 : Type +Con20 = (Con20 : Type) + ->(nil : Con20) + ->(snoc : Con20 -> Ty20 -> Con20) + -> Con20 + +nil20 : Con20 +nil20 = \ con, nil20, snoc => nil20 + +snoc20 : Con20 -> Ty20 -> Con20 +snoc20 = \ g, a, con, nil20, snoc20 => snoc20 (g con nil20 snoc20) a + +Var20 : Con20 -> Ty20 -> Type +Var20 = \ g, a => + (Var20 : Con20 -> Ty20 -> Type) + -> (vz : (g : _)-> (a : _) -> Var20 (snoc20 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var20 g a -> Var20 (snoc20 g b) a) + -> Var20 g a + +vz20 : {g : _}-> {a : _} -> Var20 (snoc20 g a) a +vz20 = \ var, vz20, vs => vz20 _ _ + +vs20 : {g : _} -> {B : _} -> {a : _} -> Var20 g a -> Var20 (snoc20 g B) a +vs20 = \ x, var, vz20, vs20 => vs20 _ _ _ (x var vz20 vs20) + +Tm20 : Con20 -> Ty20 -> Type +Tm20 = \ g, a => + (Tm20 : Con20 -> Ty20 -> Type) + -> (var : (g : _) -> (a : _) -> Var20 g a -> Tm20 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm20 (snoc20 g a) B -> Tm20 g (arr20 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm20 g (arr20 a B) -> Tm20 g a -> Tm20 g B) + -> Tm20 g a + +var20 : {g : _} -> {a : _} -> Var20 g a -> Tm20 g a +var20 = \ x, tm, var20, lam, app => var20 _ _ x + +lam20 : {g : _} -> {a : _} -> {B : _} -> Tm20 (snoc20 g a) B -> Tm20 g (arr20 a B) +lam20 = \ t, tm, var20, lam20, app => lam20 _ _ _ (t tm var20 lam20 app) + +app20 : {g:_}->{a:_}->{B:_} -> Tm20 g (arr20 a B) -> Tm20 g a -> Tm20 g B +app20 = \ t, u, tm, var20, lam20, app20 => app20 _ _ _ (t tm var20 lam20 app20) (u tm var20 lam20 app20) + +v020 : {g:_}->{a:_} -> Tm20 (snoc20 g a) a +v020 = var20 vz20 + +v120 : {g:_}->{a:_}-> {B:_}-> Tm20 (snoc20 (snoc20 g a) B) a +v120 = var20 (vs20 vz20) + +v220 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm20 (snoc20 (snoc20 (snoc20 g a) B) C) a +v220 = var20 (vs20 (vs20 vz20)) + +v320 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm20 (snoc20 (snoc20 (snoc20 (snoc20 g a) B) C) D) a +v320 = var20 (vs20 (vs20 (vs20 vz20))) + +v420 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm20 (snoc20 (snoc20 (snoc20 (snoc20 (snoc20 g a) B) C) D) E) a +v420 = var20 (vs20 (vs20 (vs20 (vs20 vz20)))) + +test20 : {g:_}-> {a:_} -> Tm20 g (arr20 (arr20 a a) (arr20 a a)) +test20 = lam20 (lam20 (app20 v120 (app20 v120 (app20 v120 (app20 v120 (app20 v120 (app20 v120 v020))))))) +Ty21 : Type +Ty21 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty21 : Ty21 +empty21 = \ _, empty, _ => empty + +arr21 : Ty21 -> Ty21 -> Ty21 +arr21 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con21 : Type +Con21 = (Con21 : Type) + ->(nil : Con21) + ->(snoc : Con21 -> Ty21 -> Con21) + -> Con21 + +nil21 : Con21 +nil21 = \ con, nil21, snoc => nil21 + +snoc21 : Con21 -> Ty21 -> Con21 +snoc21 = \ g, a, con, nil21, snoc21 => snoc21 (g con nil21 snoc21) a + +Var21 : Con21 -> Ty21 -> Type +Var21 = \ g, a => + (Var21 : Con21 -> Ty21 -> Type) + -> (vz : (g : _)-> (a : _) -> Var21 (snoc21 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var21 g a -> Var21 (snoc21 g b) a) + -> Var21 g a + +vz21 : {g : _}-> {a : _} -> Var21 (snoc21 g a) a +vz21 = \ var, vz21, vs => vz21 _ _ + +vs21 : {g : _} -> {B : _} -> {a : _} -> Var21 g a -> Var21 (snoc21 g B) a +vs21 = \ x, var, vz21, vs21 => vs21 _ _ _ (x var vz21 vs21) + +Tm21 : Con21 -> Ty21 -> Type +Tm21 = \ g, a => + (Tm21 : Con21 -> Ty21 -> Type) + -> (var : (g : _) -> (a : _) -> Var21 g a -> Tm21 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm21 (snoc21 g a) B -> Tm21 g (arr21 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm21 g (arr21 a B) -> Tm21 g a -> Tm21 g B) + -> Tm21 g a + +var21 : {g : _} -> {a : _} -> Var21 g a -> Tm21 g a +var21 = \ x, tm, var21, lam, app => var21 _ _ x + +lam21 : {g : _} -> {a : _} -> {B : _} -> Tm21 (snoc21 g a) B -> Tm21 g (arr21 a B) +lam21 = \ t, tm, var21, lam21, app => lam21 _ _ _ (t tm var21 lam21 app) + +app21 : {g:_}->{a:_}->{B:_} -> Tm21 g (arr21 a B) -> Tm21 g a -> Tm21 g B +app21 = \ t, u, tm, var21, lam21, app21 => app21 _ _ _ (t tm var21 lam21 app21) (u tm var21 lam21 app21) + +v021 : {g:_}->{a:_} -> Tm21 (snoc21 g a) a +v021 = var21 vz21 + +v121 : {g:_}->{a:_}-> {B:_}-> Tm21 (snoc21 (snoc21 g a) B) a +v121 = var21 (vs21 vz21) + +v221 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm21 (snoc21 (snoc21 (snoc21 g a) B) C) a +v221 = var21 (vs21 (vs21 vz21)) + +v321 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm21 (snoc21 (snoc21 (snoc21 (snoc21 g a) B) C) D) a +v321 = var21 (vs21 (vs21 (vs21 vz21))) + +v421 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm21 (snoc21 (snoc21 (snoc21 (snoc21 (snoc21 g a) B) C) D) E) a +v421 = var21 (vs21 (vs21 (vs21 (vs21 vz21)))) + +test21 : {g:_}-> {a:_} -> Tm21 g (arr21 (arr21 a a) (arr21 a a)) +test21 = lam21 (lam21 (app21 v121 (app21 v121 (app21 v121 (app21 v121 (app21 v121 (app21 v121 v021))))))) +Ty22 : Type +Ty22 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty22 : Ty22 +empty22 = \ _, empty, _ => empty + +arr22 : Ty22 -> Ty22 -> Ty22 +arr22 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con22 : Type +Con22 = (Con22 : Type) + ->(nil : Con22) + ->(snoc : Con22 -> Ty22 -> Con22) + -> Con22 + +nil22 : Con22 +nil22 = \ con, nil22, snoc => nil22 + +snoc22 : Con22 -> Ty22 -> Con22 +snoc22 = \ g, a, con, nil22, snoc22 => snoc22 (g con nil22 snoc22) a + +Var22 : Con22 -> Ty22 -> Type +Var22 = \ g, a => + (Var22 : Con22 -> Ty22 -> Type) + -> (vz : (g : _)-> (a : _) -> Var22 (snoc22 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var22 g a -> Var22 (snoc22 g b) a) + -> Var22 g a + +vz22 : {g : _}-> {a : _} -> Var22 (snoc22 g a) a +vz22 = \ var, vz22, vs => vz22 _ _ + +vs22 : {g : _} -> {B : _} -> {a : _} -> Var22 g a -> Var22 (snoc22 g B) a +vs22 = \ x, var, vz22, vs22 => vs22 _ _ _ (x var vz22 vs22) + +Tm22 : Con22 -> Ty22 -> Type +Tm22 = \ g, a => + (Tm22 : Con22 -> Ty22 -> Type) + -> (var : (g : _) -> (a : _) -> Var22 g a -> Tm22 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm22 (snoc22 g a) B -> Tm22 g (arr22 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm22 g (arr22 a B) -> Tm22 g a -> Tm22 g B) + -> Tm22 g a + +var22 : {g : _} -> {a : _} -> Var22 g a -> Tm22 g a +var22 = \ x, tm, var22, lam, app => var22 _ _ x + +lam22 : {g : _} -> {a : _} -> {B : _} -> Tm22 (snoc22 g a) B -> Tm22 g (arr22 a B) +lam22 = \ t, tm, var22, lam22, app => lam22 _ _ _ (t tm var22 lam22 app) + +app22 : {g:_}->{a:_}->{B:_} -> Tm22 g (arr22 a B) -> Tm22 g a -> Tm22 g B +app22 = \ t, u, tm, var22, lam22, app22 => app22 _ _ _ (t tm var22 lam22 app22) (u tm var22 lam22 app22) + +v022 : {g:_}->{a:_} -> Tm22 (snoc22 g a) a +v022 = var22 vz22 + +v122 : {g:_}->{a:_}-> {B:_}-> Tm22 (snoc22 (snoc22 g a) B) a +v122 = var22 (vs22 vz22) + +v222 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm22 (snoc22 (snoc22 (snoc22 g a) B) C) a +v222 = var22 (vs22 (vs22 vz22)) + +v322 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm22 (snoc22 (snoc22 (snoc22 (snoc22 g a) B) C) D) a +v322 = var22 (vs22 (vs22 (vs22 vz22))) + +v422 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm22 (snoc22 (snoc22 (snoc22 (snoc22 (snoc22 g a) B) C) D) E) a +v422 = var22 (vs22 (vs22 (vs22 (vs22 vz22)))) + +test22 : {g:_}-> {a:_} -> Tm22 g (arr22 (arr22 a a) (arr22 a a)) +test22 = lam22 (lam22 (app22 v122 (app22 v122 (app22 v122 (app22 v122 (app22 v122 (app22 v122 v022))))))) +Ty23 : Type +Ty23 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty23 : Ty23 +empty23 = \ _, empty, _ => empty + +arr23 : Ty23 -> Ty23 -> Ty23 +arr23 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con23 : Type +Con23 = (Con23 : Type) + ->(nil : Con23) + ->(snoc : Con23 -> Ty23 -> Con23) + -> Con23 + +nil23 : Con23 +nil23 = \ con, nil23, snoc => nil23 + +snoc23 : Con23 -> Ty23 -> Con23 +snoc23 = \ g, a, con, nil23, snoc23 => snoc23 (g con nil23 snoc23) a + +Var23 : Con23 -> Ty23 -> Type +Var23 = \ g, a => + (Var23 : Con23 -> Ty23 -> Type) + -> (vz : (g : _)-> (a : _) -> Var23 (snoc23 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var23 g a -> Var23 (snoc23 g b) a) + -> Var23 g a + +vz23 : {g : _}-> {a : _} -> Var23 (snoc23 g a) a +vz23 = \ var, vz23, vs => vz23 _ _ + +vs23 : {g : _} -> {B : _} -> {a : _} -> Var23 g a -> Var23 (snoc23 g B) a +vs23 = \ x, var, vz23, vs23 => vs23 _ _ _ (x var vz23 vs23) + +Tm23 : Con23 -> Ty23 -> Type +Tm23 = \ g, a => + (Tm23 : Con23 -> Ty23 -> Type) + -> (var : (g : _) -> (a : _) -> Var23 g a -> Tm23 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm23 (snoc23 g a) B -> Tm23 g (arr23 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm23 g (arr23 a B) -> Tm23 g a -> Tm23 g B) + -> Tm23 g a + +var23 : {g : _} -> {a : _} -> Var23 g a -> Tm23 g a +var23 = \ x, tm, var23, lam, app => var23 _ _ x + +lam23 : {g : _} -> {a : _} -> {B : _} -> Tm23 (snoc23 g a) B -> Tm23 g (arr23 a B) +lam23 = \ t, tm, var23, lam23, app => lam23 _ _ _ (t tm var23 lam23 app) + +app23 : {g:_}->{a:_}->{B:_} -> Tm23 g (arr23 a B) -> Tm23 g a -> Tm23 g B +app23 = \ t, u, tm, var23, lam23, app23 => app23 _ _ _ (t tm var23 lam23 app23) (u tm var23 lam23 app23) + +v023 : {g:_}->{a:_} -> Tm23 (snoc23 g a) a +v023 = var23 vz23 + +v123 : {g:_}->{a:_}-> {B:_}-> Tm23 (snoc23 (snoc23 g a) B) a +v123 = var23 (vs23 vz23) + +v223 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm23 (snoc23 (snoc23 (snoc23 g a) B) C) a +v223 = var23 (vs23 (vs23 vz23)) + +v323 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm23 (snoc23 (snoc23 (snoc23 (snoc23 g a) B) C) D) a +v323 = var23 (vs23 (vs23 (vs23 vz23))) + +v423 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm23 (snoc23 (snoc23 (snoc23 (snoc23 (snoc23 g a) B) C) D) E) a +v423 = var23 (vs23 (vs23 (vs23 (vs23 vz23)))) + +test23 : {g:_}-> {a:_} -> Tm23 g (arr23 (arr23 a a) (arr23 a a)) +test23 = lam23 (lam23 (app23 v123 (app23 v123 (app23 v123 (app23 v123 (app23 v123 (app23 v123 v023))))))) +Ty24 : Type +Ty24 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty24 : Ty24 +empty24 = \ _, empty, _ => empty + +arr24 : Ty24 -> Ty24 -> Ty24 +arr24 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con24 : Type +Con24 = (Con24 : Type) + ->(nil : Con24) + ->(snoc : Con24 -> Ty24 -> Con24) + -> Con24 + +nil24 : Con24 +nil24 = \ con, nil24, snoc => nil24 + +snoc24 : Con24 -> Ty24 -> Con24 +snoc24 = \ g, a, con, nil24, snoc24 => snoc24 (g con nil24 snoc24) a + +Var24 : Con24 -> Ty24 -> Type +Var24 = \ g, a => + (Var24 : Con24 -> Ty24 -> Type) + -> (vz : (g : _)-> (a : _) -> Var24 (snoc24 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var24 g a -> Var24 (snoc24 g b) a) + -> Var24 g a + +vz24 : {g : _}-> {a : _} -> Var24 (snoc24 g a) a +vz24 = \ var, vz24, vs => vz24 _ _ + +vs24 : {g : _} -> {B : _} -> {a : _} -> Var24 g a -> Var24 (snoc24 g B) a +vs24 = \ x, var, vz24, vs24 => vs24 _ _ _ (x var vz24 vs24) + +Tm24 : Con24 -> Ty24 -> Type +Tm24 = \ g, a => + (Tm24 : Con24 -> Ty24 -> Type) + -> (var : (g : _) -> (a : _) -> Var24 g a -> Tm24 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm24 (snoc24 g a) B -> Tm24 g (arr24 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm24 g (arr24 a B) -> Tm24 g a -> Tm24 g B) + -> Tm24 g a + +var24 : {g : _} -> {a : _} -> Var24 g a -> Tm24 g a +var24 = \ x, tm, var24, lam, app => var24 _ _ x + +lam24 : {g : _} -> {a : _} -> {B : _} -> Tm24 (snoc24 g a) B -> Tm24 g (arr24 a B) +lam24 = \ t, tm, var24, lam24, app => lam24 _ _ _ (t tm var24 lam24 app) + +app24 : {g:_}->{a:_}->{B:_} -> Tm24 g (arr24 a B) -> Tm24 g a -> Tm24 g B +app24 = \ t, u, tm, var24, lam24, app24 => app24 _ _ _ (t tm var24 lam24 app24) (u tm var24 lam24 app24) + +v024 : {g:_}->{a:_} -> Tm24 (snoc24 g a) a +v024 = var24 vz24 + +v124 : {g:_}->{a:_}-> {B:_}-> Tm24 (snoc24 (snoc24 g a) B) a +v124 = var24 (vs24 vz24) + +v224 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm24 (snoc24 (snoc24 (snoc24 g a) B) C) a +v224 = var24 (vs24 (vs24 vz24)) + +v324 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm24 (snoc24 (snoc24 (snoc24 (snoc24 g a) B) C) D) a +v324 = var24 (vs24 (vs24 (vs24 vz24))) + +v424 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm24 (snoc24 (snoc24 (snoc24 (snoc24 (snoc24 g a) B) C) D) E) a +v424 = var24 (vs24 (vs24 (vs24 (vs24 vz24)))) + +test24 : {g:_}-> {a:_} -> Tm24 g (arr24 (arr24 a a) (arr24 a a)) +test24 = lam24 (lam24 (app24 v124 (app24 v124 (app24 v124 (app24 v124 (app24 v124 (app24 v124 v024))))))) +Ty25 : Type +Ty25 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty25 : Ty25 +empty25 = \ _, empty, _ => empty + +arr25 : Ty25 -> Ty25 -> Ty25 +arr25 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con25 : Type +Con25 = (Con25 : Type) + ->(nil : Con25) + ->(snoc : Con25 -> Ty25 -> Con25) + -> Con25 + +nil25 : Con25 +nil25 = \ con, nil25, snoc => nil25 + +snoc25 : Con25 -> Ty25 -> Con25 +snoc25 = \ g, a, con, nil25, snoc25 => snoc25 (g con nil25 snoc25) a + +Var25 : Con25 -> Ty25 -> Type +Var25 = \ g, a => + (Var25 : Con25 -> Ty25 -> Type) + -> (vz : (g : _)-> (a : _) -> Var25 (snoc25 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var25 g a -> Var25 (snoc25 g b) a) + -> Var25 g a + +vz25 : {g : _}-> {a : _} -> Var25 (snoc25 g a) a +vz25 = \ var, vz25, vs => vz25 _ _ + +vs25 : {g : _} -> {B : _} -> {a : _} -> Var25 g a -> Var25 (snoc25 g B) a +vs25 = \ x, var, vz25, vs25 => vs25 _ _ _ (x var vz25 vs25) + +Tm25 : Con25 -> Ty25 -> Type +Tm25 = \ g, a => + (Tm25 : Con25 -> Ty25 -> Type) + -> (var : (g : _) -> (a : _) -> Var25 g a -> Tm25 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm25 (snoc25 g a) B -> Tm25 g (arr25 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm25 g (arr25 a B) -> Tm25 g a -> Tm25 g B) + -> Tm25 g a + +var25 : {g : _} -> {a : _} -> Var25 g a -> Tm25 g a +var25 = \ x, tm, var25, lam, app => var25 _ _ x + +lam25 : {g : _} -> {a : _} -> {B : _} -> Tm25 (snoc25 g a) B -> Tm25 g (arr25 a B) +lam25 = \ t, tm, var25, lam25, app => lam25 _ _ _ (t tm var25 lam25 app) + +app25 : {g:_}->{a:_}->{B:_} -> Tm25 g (arr25 a B) -> Tm25 g a -> Tm25 g B +app25 = \ t, u, tm, var25, lam25, app25 => app25 _ _ _ (t tm var25 lam25 app25) (u tm var25 lam25 app25) + +v025 : {g:_}->{a:_} -> Tm25 (snoc25 g a) a +v025 = var25 vz25 + +v125 : {g:_}->{a:_}-> {B:_}-> Tm25 (snoc25 (snoc25 g a) B) a +v125 = var25 (vs25 vz25) + +v225 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm25 (snoc25 (snoc25 (snoc25 g a) B) C) a +v225 = var25 (vs25 (vs25 vz25)) + +v325 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm25 (snoc25 (snoc25 (snoc25 (snoc25 g a) B) C) D) a +v325 = var25 (vs25 (vs25 (vs25 vz25))) + +v425 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm25 (snoc25 (snoc25 (snoc25 (snoc25 (snoc25 g a) B) C) D) E) a +v425 = var25 (vs25 (vs25 (vs25 (vs25 vz25)))) + +test25 : {g:_}-> {a:_} -> Tm25 g (arr25 (arr25 a a) (arr25 a a)) +test25 = lam25 (lam25 (app25 v125 (app25 v125 (app25 v125 (app25 v125 (app25 v125 (app25 v125 v025))))))) +Ty26 : Type +Ty26 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty26 : Ty26 +empty26 = \ _, empty, _ => empty + +arr26 : Ty26 -> Ty26 -> Ty26 +arr26 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con26 : Type +Con26 = (Con26 : Type) + ->(nil : Con26) + ->(snoc : Con26 -> Ty26 -> Con26) + -> Con26 + +nil26 : Con26 +nil26 = \ con, nil26, snoc => nil26 + +snoc26 : Con26 -> Ty26 -> Con26 +snoc26 = \ g, a, con, nil26, snoc26 => snoc26 (g con nil26 snoc26) a + +Var26 : Con26 -> Ty26 -> Type +Var26 = \ g, a => + (Var26 : Con26 -> Ty26 -> Type) + -> (vz : (g : _)-> (a : _) -> Var26 (snoc26 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var26 g a -> Var26 (snoc26 g b) a) + -> Var26 g a + +vz26 : {g : _}-> {a : _} -> Var26 (snoc26 g a) a +vz26 = \ var, vz26, vs => vz26 _ _ + +vs26 : {g : _} -> {B : _} -> {a : _} -> Var26 g a -> Var26 (snoc26 g B) a +vs26 = \ x, var, vz26, vs26 => vs26 _ _ _ (x var vz26 vs26) + +Tm26 : Con26 -> Ty26 -> Type +Tm26 = \ g, a => + (Tm26 : Con26 -> Ty26 -> Type) + -> (var : (g : _) -> (a : _) -> Var26 g a -> Tm26 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm26 (snoc26 g a) B -> Tm26 g (arr26 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm26 g (arr26 a B) -> Tm26 g a -> Tm26 g B) + -> Tm26 g a + +var26 : {g : _} -> {a : _} -> Var26 g a -> Tm26 g a +var26 = \ x, tm, var26, lam, app => var26 _ _ x + +lam26 : {g : _} -> {a : _} -> {B : _} -> Tm26 (snoc26 g a) B -> Tm26 g (arr26 a B) +lam26 = \ t, tm, var26, lam26, app => lam26 _ _ _ (t tm var26 lam26 app) + +app26 : {g:_}->{a:_}->{B:_} -> Tm26 g (arr26 a B) -> Tm26 g a -> Tm26 g B +app26 = \ t, u, tm, var26, lam26, app26 => app26 _ _ _ (t tm var26 lam26 app26) (u tm var26 lam26 app26) + +v026 : {g:_}->{a:_} -> Tm26 (snoc26 g a) a +v026 = var26 vz26 + +v126 : {g:_}->{a:_}-> {B:_}-> Tm26 (snoc26 (snoc26 g a) B) a +v126 = var26 (vs26 vz26) + +v226 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm26 (snoc26 (snoc26 (snoc26 g a) B) C) a +v226 = var26 (vs26 (vs26 vz26)) + +v326 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm26 (snoc26 (snoc26 (snoc26 (snoc26 g a) B) C) D) a +v326 = var26 (vs26 (vs26 (vs26 vz26))) + +v426 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm26 (snoc26 (snoc26 (snoc26 (snoc26 (snoc26 g a) B) C) D) E) a +v426 = var26 (vs26 (vs26 (vs26 (vs26 vz26)))) + +test26 : {g:_}-> {a:_} -> Tm26 g (arr26 (arr26 a a) (arr26 a a)) +test26 = lam26 (lam26 (app26 v126 (app26 v126 (app26 v126 (app26 v126 (app26 v126 (app26 v126 v026))))))) +Ty27 : Type +Ty27 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty27 : Ty27 +empty27 = \ _, empty, _ => empty + +arr27 : Ty27 -> Ty27 -> Ty27 +arr27 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con27 : Type +Con27 = (Con27 : Type) + ->(nil : Con27) + ->(snoc : Con27 -> Ty27 -> Con27) + -> Con27 + +nil27 : Con27 +nil27 = \ con, nil27, snoc => nil27 + +snoc27 : Con27 -> Ty27 -> Con27 +snoc27 = \ g, a, con, nil27, snoc27 => snoc27 (g con nil27 snoc27) a + +Var27 : Con27 -> Ty27 -> Type +Var27 = \ g, a => + (Var27 : Con27 -> Ty27 -> Type) + -> (vz : (g : _)-> (a : _) -> Var27 (snoc27 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var27 g a -> Var27 (snoc27 g b) a) + -> Var27 g a + +vz27 : {g : _}-> {a : _} -> Var27 (snoc27 g a) a +vz27 = \ var, vz27, vs => vz27 _ _ + +vs27 : {g : _} -> {B : _} -> {a : _} -> Var27 g a -> Var27 (snoc27 g B) a +vs27 = \ x, var, vz27, vs27 => vs27 _ _ _ (x var vz27 vs27) + +Tm27 : Con27 -> Ty27 -> Type +Tm27 = \ g, a => + (Tm27 : Con27 -> Ty27 -> Type) + -> (var : (g : _) -> (a : _) -> Var27 g a -> Tm27 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm27 (snoc27 g a) B -> Tm27 g (arr27 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm27 g (arr27 a B) -> Tm27 g a -> Tm27 g B) + -> Tm27 g a + +var27 : {g : _} -> {a : _} -> Var27 g a -> Tm27 g a +var27 = \ x, tm, var27, lam, app => var27 _ _ x + +lam27 : {g : _} -> {a : _} -> {B : _} -> Tm27 (snoc27 g a) B -> Tm27 g (arr27 a B) +lam27 = \ t, tm, var27, lam27, app => lam27 _ _ _ (t tm var27 lam27 app) + +app27 : {g:_}->{a:_}->{B:_} -> Tm27 g (arr27 a B) -> Tm27 g a -> Tm27 g B +app27 = \ t, u, tm, var27, lam27, app27 => app27 _ _ _ (t tm var27 lam27 app27) (u tm var27 lam27 app27) + +v027 : {g:_}->{a:_} -> Tm27 (snoc27 g a) a +v027 = var27 vz27 + +v127 : {g:_}->{a:_}-> {B:_}-> Tm27 (snoc27 (snoc27 g a) B) a +v127 = var27 (vs27 vz27) + +v227 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm27 (snoc27 (snoc27 (snoc27 g a) B) C) a +v227 = var27 (vs27 (vs27 vz27)) + +v327 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm27 (snoc27 (snoc27 (snoc27 (snoc27 g a) B) C) D) a +v327 = var27 (vs27 (vs27 (vs27 vz27))) + +v427 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm27 (snoc27 (snoc27 (snoc27 (snoc27 (snoc27 g a) B) C) D) E) a +v427 = var27 (vs27 (vs27 (vs27 (vs27 vz27)))) + +test27 : {g:_}-> {a:_} -> Tm27 g (arr27 (arr27 a a) (arr27 a a)) +test27 = lam27 (lam27 (app27 v127 (app27 v127 (app27 v127 (app27 v127 (app27 v127 (app27 v127 v027))))))) +Ty28 : Type +Ty28 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty28 : Ty28 +empty28 = \ _, empty, _ => empty + +arr28 : Ty28 -> Ty28 -> Ty28 +arr28 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con28 : Type +Con28 = (Con28 : Type) + ->(nil : Con28) + ->(snoc : Con28 -> Ty28 -> Con28) + -> Con28 + +nil28 : Con28 +nil28 = \ con, nil28, snoc => nil28 + +snoc28 : Con28 -> Ty28 -> Con28 +snoc28 = \ g, a, con, nil28, snoc28 => snoc28 (g con nil28 snoc28) a + +Var28 : Con28 -> Ty28 -> Type +Var28 = \ g, a => + (Var28 : Con28 -> Ty28 -> Type) + -> (vz : (g : _)-> (a : _) -> Var28 (snoc28 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var28 g a -> Var28 (snoc28 g b) a) + -> Var28 g a + +vz28 : {g : _}-> {a : _} -> Var28 (snoc28 g a) a +vz28 = \ var, vz28, vs => vz28 _ _ + +vs28 : {g : _} -> {B : _} -> {a : _} -> Var28 g a -> Var28 (snoc28 g B) a +vs28 = \ x, var, vz28, vs28 => vs28 _ _ _ (x var vz28 vs28) + +Tm28 : Con28 -> Ty28 -> Type +Tm28 = \ g, a => + (Tm28 : Con28 -> Ty28 -> Type) + -> (var : (g : _) -> (a : _) -> Var28 g a -> Tm28 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm28 (snoc28 g a) B -> Tm28 g (arr28 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm28 g (arr28 a B) -> Tm28 g a -> Tm28 g B) + -> Tm28 g a + +var28 : {g : _} -> {a : _} -> Var28 g a -> Tm28 g a +var28 = \ x, tm, var28, lam, app => var28 _ _ x + +lam28 : {g : _} -> {a : _} -> {B : _} -> Tm28 (snoc28 g a) B -> Tm28 g (arr28 a B) +lam28 = \ t, tm, var28, lam28, app => lam28 _ _ _ (t tm var28 lam28 app) + +app28 : {g:_}->{a:_}->{B:_} -> Tm28 g (arr28 a B) -> Tm28 g a -> Tm28 g B +app28 = \ t, u, tm, var28, lam28, app28 => app28 _ _ _ (t tm var28 lam28 app28) (u tm var28 lam28 app28) + +v028 : {g:_}->{a:_} -> Tm28 (snoc28 g a) a +v028 = var28 vz28 + +v128 : {g:_}->{a:_}-> {B:_}-> Tm28 (snoc28 (snoc28 g a) B) a +v128 = var28 (vs28 vz28) + +v228 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm28 (snoc28 (snoc28 (snoc28 g a) B) C) a +v228 = var28 (vs28 (vs28 vz28)) + +v328 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm28 (snoc28 (snoc28 (snoc28 (snoc28 g a) B) C) D) a +v328 = var28 (vs28 (vs28 (vs28 vz28))) + +v428 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm28 (snoc28 (snoc28 (snoc28 (snoc28 (snoc28 g a) B) C) D) E) a +v428 = var28 (vs28 (vs28 (vs28 (vs28 vz28)))) + +test28 : {g:_}-> {a:_} -> Tm28 g (arr28 (arr28 a a) (arr28 a a)) +test28 = lam28 (lam28 (app28 v128 (app28 v128 (app28 v128 (app28 v128 (app28 v128 (app28 v128 v028))))))) +Ty29 : Type +Ty29 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty29 : Ty29 +empty29 = \ _, empty, _ => empty + +arr29 : Ty29 -> Ty29 -> Ty29 +arr29 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con29 : Type +Con29 = (Con29 : Type) + ->(nil : Con29) + ->(snoc : Con29 -> Ty29 -> Con29) + -> Con29 + +nil29 : Con29 +nil29 = \ con, nil29, snoc => nil29 + +snoc29 : Con29 -> Ty29 -> Con29 +snoc29 = \ g, a, con, nil29, snoc29 => snoc29 (g con nil29 snoc29) a + +Var29 : Con29 -> Ty29 -> Type +Var29 = \ g, a => + (Var29 : Con29 -> Ty29 -> Type) + -> (vz : (g : _)-> (a : _) -> Var29 (snoc29 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var29 g a -> Var29 (snoc29 g b) a) + -> Var29 g a + +vz29 : {g : _}-> {a : _} -> Var29 (snoc29 g a) a +vz29 = \ var, vz29, vs => vz29 _ _ + +vs29 : {g : _} -> {B : _} -> {a : _} -> Var29 g a -> Var29 (snoc29 g B) a +vs29 = \ x, var, vz29, vs29 => vs29 _ _ _ (x var vz29 vs29) + +Tm29 : Con29 -> Ty29 -> Type +Tm29 = \ g, a => + (Tm29 : Con29 -> Ty29 -> Type) + -> (var : (g : _) -> (a : _) -> Var29 g a -> Tm29 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm29 (snoc29 g a) B -> Tm29 g (arr29 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm29 g (arr29 a B) -> Tm29 g a -> Tm29 g B) + -> Tm29 g a + +var29 : {g : _} -> {a : _} -> Var29 g a -> Tm29 g a +var29 = \ x, tm, var29, lam, app => var29 _ _ x + +lam29 : {g : _} -> {a : _} -> {B : _} -> Tm29 (snoc29 g a) B -> Tm29 g (arr29 a B) +lam29 = \ t, tm, var29, lam29, app => lam29 _ _ _ (t tm var29 lam29 app) + +app29 : {g:_}->{a:_}->{B:_} -> Tm29 g (arr29 a B) -> Tm29 g a -> Tm29 g B +app29 = \ t, u, tm, var29, lam29, app29 => app29 _ _ _ (t tm var29 lam29 app29) (u tm var29 lam29 app29) + +v029 : {g:_}->{a:_} -> Tm29 (snoc29 g a) a +v029 = var29 vz29 + +v129 : {g:_}->{a:_}-> {B:_}-> Tm29 (snoc29 (snoc29 g a) B) a +v129 = var29 (vs29 vz29) + +v229 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm29 (snoc29 (snoc29 (snoc29 g a) B) C) a +v229 = var29 (vs29 (vs29 vz29)) + +v329 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm29 (snoc29 (snoc29 (snoc29 (snoc29 g a) B) C) D) a +v329 = var29 (vs29 (vs29 (vs29 vz29))) + +v429 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm29 (snoc29 (snoc29 (snoc29 (snoc29 (snoc29 g a) B) C) D) E) a +v429 = var29 (vs29 (vs29 (vs29 (vs29 vz29)))) + +test29 : {g:_}-> {a:_} -> Tm29 g (arr29 (arr29 a a) (arr29 a a)) +test29 = lam29 (lam29 (app29 v129 (app29 v129 (app29 v129 (app29 v129 (app29 v129 (app29 v129 v029))))))) +Ty30 : Type +Ty30 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty30 : Ty30 +empty30 = \ _, empty, _ => empty + +arr30 : Ty30 -> Ty30 -> Ty30 +arr30 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con30 : Type +Con30 = (Con30 : Type) + ->(nil : Con30) + ->(snoc : Con30 -> Ty30 -> Con30) + -> Con30 + +nil30 : Con30 +nil30 = \ con, nil30, snoc => nil30 + +snoc30 : Con30 -> Ty30 -> Con30 +snoc30 = \ g, a, con, nil30, snoc30 => snoc30 (g con nil30 snoc30) a + +Var30 : Con30 -> Ty30 -> Type +Var30 = \ g, a => + (Var30 : Con30 -> Ty30 -> Type) + -> (vz : (g : _)-> (a : _) -> Var30 (snoc30 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var30 g a -> Var30 (snoc30 g b) a) + -> Var30 g a + +vz30 : {g : _}-> {a : _} -> Var30 (snoc30 g a) a +vz30 = \ var, vz30, vs => vz30 _ _ + +vs30 : {g : _} -> {B : _} -> {a : _} -> Var30 g a -> Var30 (snoc30 g B) a +vs30 = \ x, var, vz30, vs30 => vs30 _ _ _ (x var vz30 vs30) + +Tm30 : Con30 -> Ty30 -> Type +Tm30 = \ g, a => + (Tm30 : Con30 -> Ty30 -> Type) + -> (var : (g : _) -> (a : _) -> Var30 g a -> Tm30 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm30 (snoc30 g a) B -> Tm30 g (arr30 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm30 g (arr30 a B) -> Tm30 g a -> Tm30 g B) + -> Tm30 g a + +var30 : {g : _} -> {a : _} -> Var30 g a -> Tm30 g a +var30 = \ x, tm, var30, lam, app => var30 _ _ x + +lam30 : {g : _} -> {a : _} -> {B : _} -> Tm30 (snoc30 g a) B -> Tm30 g (arr30 a B) +lam30 = \ t, tm, var30, lam30, app => lam30 _ _ _ (t tm var30 lam30 app) + +app30 : {g:_}->{a:_}->{B:_} -> Tm30 g (arr30 a B) -> Tm30 g a -> Tm30 g B +app30 = \ t, u, tm, var30, lam30, app30 => app30 _ _ _ (t tm var30 lam30 app30) (u tm var30 lam30 app30) + +v030 : {g:_}->{a:_} -> Tm30 (snoc30 g a) a +v030 = var30 vz30 + +v130 : {g:_}->{a:_}-> {B:_}-> Tm30 (snoc30 (snoc30 g a) B) a +v130 = var30 (vs30 vz30) + +v230 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm30 (snoc30 (snoc30 (snoc30 g a) B) C) a +v230 = var30 (vs30 (vs30 vz30)) + +v330 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm30 (snoc30 (snoc30 (snoc30 (snoc30 g a) B) C) D) a +v330 = var30 (vs30 (vs30 (vs30 vz30))) + +v430 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm30 (snoc30 (snoc30 (snoc30 (snoc30 (snoc30 g a) B) C) D) E) a +v430 = var30 (vs30 (vs30 (vs30 (vs30 vz30)))) + +test30 : {g:_}-> {a:_} -> Tm30 g (arr30 (arr30 a a) (arr30 a a)) +test30 = lam30 (lam30 (app30 v130 (app30 v130 (app30 v130 (app30 v130 (app30 v130 (app30 v130 v030))))))) +Ty31 : Type +Ty31 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty31 : Ty31 +empty31 = \ _, empty, _ => empty + +arr31 : Ty31 -> Ty31 -> Ty31 +arr31 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con31 : Type +Con31 = (Con31 : Type) + ->(nil : Con31) + ->(snoc : Con31 -> Ty31 -> Con31) + -> Con31 + +nil31 : Con31 +nil31 = \ con, nil31, snoc => nil31 + +snoc31 : Con31 -> Ty31 -> Con31 +snoc31 = \ g, a, con, nil31, snoc31 => snoc31 (g con nil31 snoc31) a + +Var31 : Con31 -> Ty31 -> Type +Var31 = \ g, a => + (Var31 : Con31 -> Ty31 -> Type) + -> (vz : (g : _)-> (a : _) -> Var31 (snoc31 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var31 g a -> Var31 (snoc31 g b) a) + -> Var31 g a + +vz31 : {g : _}-> {a : _} -> Var31 (snoc31 g a) a +vz31 = \ var, vz31, vs => vz31 _ _ + +vs31 : {g : _} -> {B : _} -> {a : _} -> Var31 g a -> Var31 (snoc31 g B) a +vs31 = \ x, var, vz31, vs31 => vs31 _ _ _ (x var vz31 vs31) + +Tm31 : Con31 -> Ty31 -> Type +Tm31 = \ g, a => + (Tm31 : Con31 -> Ty31 -> Type) + -> (var : (g : _) -> (a : _) -> Var31 g a -> Tm31 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm31 (snoc31 g a) B -> Tm31 g (arr31 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm31 g (arr31 a B) -> Tm31 g a -> Tm31 g B) + -> Tm31 g a + +var31 : {g : _} -> {a : _} -> Var31 g a -> Tm31 g a +var31 = \ x, tm, var31, lam, app => var31 _ _ x + +lam31 : {g : _} -> {a : _} -> {B : _} -> Tm31 (snoc31 g a) B -> Tm31 g (arr31 a B) +lam31 = \ t, tm, var31, lam31, app => lam31 _ _ _ (t tm var31 lam31 app) + +app31 : {g:_}->{a:_}->{B:_} -> Tm31 g (arr31 a B) -> Tm31 g a -> Tm31 g B +app31 = \ t, u, tm, var31, lam31, app31 => app31 _ _ _ (t tm var31 lam31 app31) (u tm var31 lam31 app31) + +v031 : {g:_}->{a:_} -> Tm31 (snoc31 g a) a +v031 = var31 vz31 + +v131 : {g:_}->{a:_}-> {B:_}-> Tm31 (snoc31 (snoc31 g a) B) a +v131 = var31 (vs31 vz31) + +v231 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm31 (snoc31 (snoc31 (snoc31 g a) B) C) a +v231 = var31 (vs31 (vs31 vz31)) + +v331 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm31 (snoc31 (snoc31 (snoc31 (snoc31 g a) B) C) D) a +v331 = var31 (vs31 (vs31 (vs31 vz31))) + +v431 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm31 (snoc31 (snoc31 (snoc31 (snoc31 (snoc31 g a) B) C) D) E) a +v431 = var31 (vs31 (vs31 (vs31 (vs31 vz31)))) + +test31 : {g:_}-> {a:_} -> Tm31 g (arr31 (arr31 a a) (arr31 a a)) +test31 = lam31 (lam31 (app31 v131 (app31 v131 (app31 v131 (app31 v131 (app31 v131 (app31 v131 v031))))))) +Ty32 : Type +Ty32 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty32 : Ty32 +empty32 = \ _, empty, _ => empty + +arr32 : Ty32 -> Ty32 -> Ty32 +arr32 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con32 : Type +Con32 = (Con32 : Type) + ->(nil : Con32) + ->(snoc : Con32 -> Ty32 -> Con32) + -> Con32 + +nil32 : Con32 +nil32 = \ con, nil32, snoc => nil32 + +snoc32 : Con32 -> Ty32 -> Con32 +snoc32 = \ g, a, con, nil32, snoc32 => snoc32 (g con nil32 snoc32) a + +Var32 : Con32 -> Ty32 -> Type +Var32 = \ g, a => + (Var32 : Con32 -> Ty32 -> Type) + -> (vz : (g : _)-> (a : _) -> Var32 (snoc32 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var32 g a -> Var32 (snoc32 g b) a) + -> Var32 g a + +vz32 : {g : _}-> {a : _} -> Var32 (snoc32 g a) a +vz32 = \ var, vz32, vs => vz32 _ _ + +vs32 : {g : _} -> {B : _} -> {a : _} -> Var32 g a -> Var32 (snoc32 g B) a +vs32 = \ x, var, vz32, vs32 => vs32 _ _ _ (x var vz32 vs32) + +Tm32 : Con32 -> Ty32 -> Type +Tm32 = \ g, a => + (Tm32 : Con32 -> Ty32 -> Type) + -> (var : (g : _) -> (a : _) -> Var32 g a -> Tm32 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm32 (snoc32 g a) B -> Tm32 g (arr32 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm32 g (arr32 a B) -> Tm32 g a -> Tm32 g B) + -> Tm32 g a + +var32 : {g : _} -> {a : _} -> Var32 g a -> Tm32 g a +var32 = \ x, tm, var32, lam, app => var32 _ _ x + +lam32 : {g : _} -> {a : _} -> {B : _} -> Tm32 (snoc32 g a) B -> Tm32 g (arr32 a B) +lam32 = \ t, tm, var32, lam32, app => lam32 _ _ _ (t tm var32 lam32 app) + +app32 : {g:_}->{a:_}->{B:_} -> Tm32 g (arr32 a B) -> Tm32 g a -> Tm32 g B +app32 = \ t, u, tm, var32, lam32, app32 => app32 _ _ _ (t tm var32 lam32 app32) (u tm var32 lam32 app32) + +v032 : {g:_}->{a:_} -> Tm32 (snoc32 g a) a +v032 = var32 vz32 + +v132 : {g:_}->{a:_}-> {B:_}-> Tm32 (snoc32 (snoc32 g a) B) a +v132 = var32 (vs32 vz32) + +v232 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm32 (snoc32 (snoc32 (snoc32 g a) B) C) a +v232 = var32 (vs32 (vs32 vz32)) + +v332 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm32 (snoc32 (snoc32 (snoc32 (snoc32 g a) B) C) D) a +v332 = var32 (vs32 (vs32 (vs32 vz32))) + +v432 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm32 (snoc32 (snoc32 (snoc32 (snoc32 (snoc32 g a) B) C) D) E) a +v432 = var32 (vs32 (vs32 (vs32 (vs32 vz32)))) + +test32 : {g:_}-> {a:_} -> Tm32 g (arr32 (arr32 a a) (arr32 a a)) +test32 = lam32 (lam32 (app32 v132 (app32 v132 (app32 v132 (app32 v132 (app32 v132 (app32 v132 v032))))))) +Ty33 : Type +Ty33 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty33 : Ty33 +empty33 = \ _, empty, _ => empty + +arr33 : Ty33 -> Ty33 -> Ty33 +arr33 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con33 : Type +Con33 = (Con33 : Type) + ->(nil : Con33) + ->(snoc : Con33 -> Ty33 -> Con33) + -> Con33 + +nil33 : Con33 +nil33 = \ con, nil33, snoc => nil33 + +snoc33 : Con33 -> Ty33 -> Con33 +snoc33 = \ g, a, con, nil33, snoc33 => snoc33 (g con nil33 snoc33) a + +Var33 : Con33 -> Ty33 -> Type +Var33 = \ g, a => + (Var33 : Con33 -> Ty33 -> Type) + -> (vz : (g : _)-> (a : _) -> Var33 (snoc33 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var33 g a -> Var33 (snoc33 g b) a) + -> Var33 g a + +vz33 : {g : _}-> {a : _} -> Var33 (snoc33 g a) a +vz33 = \ var, vz33, vs => vz33 _ _ + +vs33 : {g : _} -> {B : _} -> {a : _} -> Var33 g a -> Var33 (snoc33 g B) a +vs33 = \ x, var, vz33, vs33 => vs33 _ _ _ (x var vz33 vs33) + +Tm33 : Con33 -> Ty33 -> Type +Tm33 = \ g, a => + (Tm33 : Con33 -> Ty33 -> Type) + -> (var : (g : _) -> (a : _) -> Var33 g a -> Tm33 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm33 (snoc33 g a) B -> Tm33 g (arr33 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm33 g (arr33 a B) -> Tm33 g a -> Tm33 g B) + -> Tm33 g a + +var33 : {g : _} -> {a : _} -> Var33 g a -> Tm33 g a +var33 = \ x, tm, var33, lam, app => var33 _ _ x + +lam33 : {g : _} -> {a : _} -> {B : _} -> Tm33 (snoc33 g a) B -> Tm33 g (arr33 a B) +lam33 = \ t, tm, var33, lam33, app => lam33 _ _ _ (t tm var33 lam33 app) + +app33 : {g:_}->{a:_}->{B:_} -> Tm33 g (arr33 a B) -> Tm33 g a -> Tm33 g B +app33 = \ t, u, tm, var33, lam33, app33 => app33 _ _ _ (t tm var33 lam33 app33) (u tm var33 lam33 app33) + +v033 : {g:_}->{a:_} -> Tm33 (snoc33 g a) a +v033 = var33 vz33 + +v133 : {g:_}->{a:_}-> {B:_}-> Tm33 (snoc33 (snoc33 g a) B) a +v133 = var33 (vs33 vz33) + +v233 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm33 (snoc33 (snoc33 (snoc33 g a) B) C) a +v233 = var33 (vs33 (vs33 vz33)) + +v333 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm33 (snoc33 (snoc33 (snoc33 (snoc33 g a) B) C) D) a +v333 = var33 (vs33 (vs33 (vs33 vz33))) + +v433 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm33 (snoc33 (snoc33 (snoc33 (snoc33 (snoc33 g a) B) C) D) E) a +v433 = var33 (vs33 (vs33 (vs33 (vs33 vz33)))) + +test33 : {g:_}-> {a:_} -> Tm33 g (arr33 (arr33 a a) (arr33 a a)) +test33 = lam33 (lam33 (app33 v133 (app33 v133 (app33 v133 (app33 v133 (app33 v133 (app33 v133 v033))))))) +Ty34 : Type +Ty34 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty34 : Ty34 +empty34 = \ _, empty, _ => empty + +arr34 : Ty34 -> Ty34 -> Ty34 +arr34 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con34 : Type +Con34 = (Con34 : Type) + ->(nil : Con34) + ->(snoc : Con34 -> Ty34 -> Con34) + -> Con34 + +nil34 : Con34 +nil34 = \ con, nil34, snoc => nil34 + +snoc34 : Con34 -> Ty34 -> Con34 +snoc34 = \ g, a, con, nil34, snoc34 => snoc34 (g con nil34 snoc34) a + +Var34 : Con34 -> Ty34 -> Type +Var34 = \ g, a => + (Var34 : Con34 -> Ty34 -> Type) + -> (vz : (g : _)-> (a : _) -> Var34 (snoc34 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var34 g a -> Var34 (snoc34 g b) a) + -> Var34 g a + +vz34 : {g : _}-> {a : _} -> Var34 (snoc34 g a) a +vz34 = \ var, vz34, vs => vz34 _ _ + +vs34 : {g : _} -> {B : _} -> {a : _} -> Var34 g a -> Var34 (snoc34 g B) a +vs34 = \ x, var, vz34, vs34 => vs34 _ _ _ (x var vz34 vs34) + +Tm34 : Con34 -> Ty34 -> Type +Tm34 = \ g, a => + (Tm34 : Con34 -> Ty34 -> Type) + -> (var : (g : _) -> (a : _) -> Var34 g a -> Tm34 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm34 (snoc34 g a) B -> Tm34 g (arr34 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm34 g (arr34 a B) -> Tm34 g a -> Tm34 g B) + -> Tm34 g a + +var34 : {g : _} -> {a : _} -> Var34 g a -> Tm34 g a +var34 = \ x, tm, var34, lam, app => var34 _ _ x + +lam34 : {g : _} -> {a : _} -> {B : _} -> Tm34 (snoc34 g a) B -> Tm34 g (arr34 a B) +lam34 = \ t, tm, var34, lam34, app => lam34 _ _ _ (t tm var34 lam34 app) + +app34 : {g:_}->{a:_}->{B:_} -> Tm34 g (arr34 a B) -> Tm34 g a -> Tm34 g B +app34 = \ t, u, tm, var34, lam34, app34 => app34 _ _ _ (t tm var34 lam34 app34) (u tm var34 lam34 app34) + +v034 : {g:_}->{a:_} -> Tm34 (snoc34 g a) a +v034 = var34 vz34 + +v134 : {g:_}->{a:_}-> {B:_}-> Tm34 (snoc34 (snoc34 g a) B) a +v134 = var34 (vs34 vz34) + +v234 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm34 (snoc34 (snoc34 (snoc34 g a) B) C) a +v234 = var34 (vs34 (vs34 vz34)) + +v334 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm34 (snoc34 (snoc34 (snoc34 (snoc34 g a) B) C) D) a +v334 = var34 (vs34 (vs34 (vs34 vz34))) + +v434 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm34 (snoc34 (snoc34 (snoc34 (snoc34 (snoc34 g a) B) C) D) E) a +v434 = var34 (vs34 (vs34 (vs34 (vs34 vz34)))) + +test34 : {g:_}-> {a:_} -> Tm34 g (arr34 (arr34 a a) (arr34 a a)) +test34 = lam34 (lam34 (app34 v134 (app34 v134 (app34 v134 (app34 v134 (app34 v134 (app34 v134 v034))))))) +Ty35 : Type +Ty35 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty35 : Ty35 +empty35 = \ _, empty, _ => empty + +arr35 : Ty35 -> Ty35 -> Ty35 +arr35 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con35 : Type +Con35 = (Con35 : Type) + ->(nil : Con35) + ->(snoc : Con35 -> Ty35 -> Con35) + -> Con35 + +nil35 : Con35 +nil35 = \ con, nil35, snoc => nil35 + +snoc35 : Con35 -> Ty35 -> Con35 +snoc35 = \ g, a, con, nil35, snoc35 => snoc35 (g con nil35 snoc35) a + +Var35 : Con35 -> Ty35 -> Type +Var35 = \ g, a => + (Var35 : Con35 -> Ty35 -> Type) + -> (vz : (g : _)-> (a : _) -> Var35 (snoc35 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var35 g a -> Var35 (snoc35 g b) a) + -> Var35 g a + +vz35 : {g : _}-> {a : _} -> Var35 (snoc35 g a) a +vz35 = \ var, vz35, vs => vz35 _ _ + +vs35 : {g : _} -> {B : _} -> {a : _} -> Var35 g a -> Var35 (snoc35 g B) a +vs35 = \ x, var, vz35, vs35 => vs35 _ _ _ (x var vz35 vs35) + +Tm35 : Con35 -> Ty35 -> Type +Tm35 = \ g, a => + (Tm35 : Con35 -> Ty35 -> Type) + -> (var : (g : _) -> (a : _) -> Var35 g a -> Tm35 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm35 (snoc35 g a) B -> Tm35 g (arr35 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm35 g (arr35 a B) -> Tm35 g a -> Tm35 g B) + -> Tm35 g a + +var35 : {g : _} -> {a : _} -> Var35 g a -> Tm35 g a +var35 = \ x, tm, var35, lam, app => var35 _ _ x + +lam35 : {g : _} -> {a : _} -> {B : _} -> Tm35 (snoc35 g a) B -> Tm35 g (arr35 a B) +lam35 = \ t, tm, var35, lam35, app => lam35 _ _ _ (t tm var35 lam35 app) + +app35 : {g:_}->{a:_}->{B:_} -> Tm35 g (arr35 a B) -> Tm35 g a -> Tm35 g B +app35 = \ t, u, tm, var35, lam35, app35 => app35 _ _ _ (t tm var35 lam35 app35) (u tm var35 lam35 app35) + +v035 : {g:_}->{a:_} -> Tm35 (snoc35 g a) a +v035 = var35 vz35 + +v135 : {g:_}->{a:_}-> {B:_}-> Tm35 (snoc35 (snoc35 g a) B) a +v135 = var35 (vs35 vz35) + +v235 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm35 (snoc35 (snoc35 (snoc35 g a) B) C) a +v235 = var35 (vs35 (vs35 vz35)) + +v335 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm35 (snoc35 (snoc35 (snoc35 (snoc35 g a) B) C) D) a +v335 = var35 (vs35 (vs35 (vs35 vz35))) + +v435 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm35 (snoc35 (snoc35 (snoc35 (snoc35 (snoc35 g a) B) C) D) E) a +v435 = var35 (vs35 (vs35 (vs35 (vs35 vz35)))) + +test35 : {g:_}-> {a:_} -> Tm35 g (arr35 (arr35 a a) (arr35 a a)) +test35 = lam35 (lam35 (app35 v135 (app35 v135 (app35 v135 (app35 v135 (app35 v135 (app35 v135 v035))))))) +Ty36 : Type +Ty36 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty36 : Ty36 +empty36 = \ _, empty, _ => empty + +arr36 : Ty36 -> Ty36 -> Ty36 +arr36 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con36 : Type +Con36 = (Con36 : Type) + ->(nil : Con36) + ->(snoc : Con36 -> Ty36 -> Con36) + -> Con36 + +nil36 : Con36 +nil36 = \ con, nil36, snoc => nil36 + +snoc36 : Con36 -> Ty36 -> Con36 +snoc36 = \ g, a, con, nil36, snoc36 => snoc36 (g con nil36 snoc36) a + +Var36 : Con36 -> Ty36 -> Type +Var36 = \ g, a => + (Var36 : Con36 -> Ty36 -> Type) + -> (vz : (g : _)-> (a : _) -> Var36 (snoc36 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var36 g a -> Var36 (snoc36 g b) a) + -> Var36 g a + +vz36 : {g : _}-> {a : _} -> Var36 (snoc36 g a) a +vz36 = \ var, vz36, vs => vz36 _ _ + +vs36 : {g : _} -> {B : _} -> {a : _} -> Var36 g a -> Var36 (snoc36 g B) a +vs36 = \ x, var, vz36, vs36 => vs36 _ _ _ (x var vz36 vs36) + +Tm36 : Con36 -> Ty36 -> Type +Tm36 = \ g, a => + (Tm36 : Con36 -> Ty36 -> Type) + -> (var : (g : _) -> (a : _) -> Var36 g a -> Tm36 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm36 (snoc36 g a) B -> Tm36 g (arr36 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm36 g (arr36 a B) -> Tm36 g a -> Tm36 g B) + -> Tm36 g a + +var36 : {g : _} -> {a : _} -> Var36 g a -> Tm36 g a +var36 = \ x, tm, var36, lam, app => var36 _ _ x + +lam36 : {g : _} -> {a : _} -> {B : _} -> Tm36 (snoc36 g a) B -> Tm36 g (arr36 a B) +lam36 = \ t, tm, var36, lam36, app => lam36 _ _ _ (t tm var36 lam36 app) + +app36 : {g:_}->{a:_}->{B:_} -> Tm36 g (arr36 a B) -> Tm36 g a -> Tm36 g B +app36 = \ t, u, tm, var36, lam36, app36 => app36 _ _ _ (t tm var36 lam36 app36) (u tm var36 lam36 app36) + +v036 : {g:_}->{a:_} -> Tm36 (snoc36 g a) a +v036 = var36 vz36 + +v136 : {g:_}->{a:_}-> {B:_}-> Tm36 (snoc36 (snoc36 g a) B) a +v136 = var36 (vs36 vz36) + +v236 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm36 (snoc36 (snoc36 (snoc36 g a) B) C) a +v236 = var36 (vs36 (vs36 vz36)) + +v336 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm36 (snoc36 (snoc36 (snoc36 (snoc36 g a) B) C) D) a +v336 = var36 (vs36 (vs36 (vs36 vz36))) + +v436 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm36 (snoc36 (snoc36 (snoc36 (snoc36 (snoc36 g a) B) C) D) E) a +v436 = var36 (vs36 (vs36 (vs36 (vs36 vz36)))) + +test36 : {g:_}-> {a:_} -> Tm36 g (arr36 (arr36 a a) (arr36 a a)) +test36 = lam36 (lam36 (app36 v136 (app36 v136 (app36 v136 (app36 v136 (app36 v136 (app36 v136 v036))))))) +Ty37 : Type +Ty37 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty37 : Ty37 +empty37 = \ _, empty, _ => empty + +arr37 : Ty37 -> Ty37 -> Ty37 +arr37 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con37 : Type +Con37 = (Con37 : Type) + ->(nil : Con37) + ->(snoc : Con37 -> Ty37 -> Con37) + -> Con37 + +nil37 : Con37 +nil37 = \ con, nil37, snoc => nil37 + +snoc37 : Con37 -> Ty37 -> Con37 +snoc37 = \ g, a, con, nil37, snoc37 => snoc37 (g con nil37 snoc37) a + +Var37 : Con37 -> Ty37 -> Type +Var37 = \ g, a => + (Var37 : Con37 -> Ty37 -> Type) + -> (vz : (g : _)-> (a : _) -> Var37 (snoc37 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var37 g a -> Var37 (snoc37 g b) a) + -> Var37 g a + +vz37 : {g : _}-> {a : _} -> Var37 (snoc37 g a) a +vz37 = \ var, vz37, vs => vz37 _ _ + +vs37 : {g : _} -> {B : _} -> {a : _} -> Var37 g a -> Var37 (snoc37 g B) a +vs37 = \ x, var, vz37, vs37 => vs37 _ _ _ (x var vz37 vs37) + +Tm37 : Con37 -> Ty37 -> Type +Tm37 = \ g, a => + (Tm37 : Con37 -> Ty37 -> Type) + -> (var : (g : _) -> (a : _) -> Var37 g a -> Tm37 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm37 (snoc37 g a) B -> Tm37 g (arr37 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm37 g (arr37 a B) -> Tm37 g a -> Tm37 g B) + -> Tm37 g a + +var37 : {g : _} -> {a : _} -> Var37 g a -> Tm37 g a +var37 = \ x, tm, var37, lam, app => var37 _ _ x + +lam37 : {g : _} -> {a : _} -> {B : _} -> Tm37 (snoc37 g a) B -> Tm37 g (arr37 a B) +lam37 = \ t, tm, var37, lam37, app => lam37 _ _ _ (t tm var37 lam37 app) + +app37 : {g:_}->{a:_}->{B:_} -> Tm37 g (arr37 a B) -> Tm37 g a -> Tm37 g B +app37 = \ t, u, tm, var37, lam37, app37 => app37 _ _ _ (t tm var37 lam37 app37) (u tm var37 lam37 app37) + +v037 : {g:_}->{a:_} -> Tm37 (snoc37 g a) a +v037 = var37 vz37 + +v137 : {g:_}->{a:_}-> {B:_}-> Tm37 (snoc37 (snoc37 g a) B) a +v137 = var37 (vs37 vz37) + +v237 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm37 (snoc37 (snoc37 (snoc37 g a) B) C) a +v237 = var37 (vs37 (vs37 vz37)) + +v337 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm37 (snoc37 (snoc37 (snoc37 (snoc37 g a) B) C) D) a +v337 = var37 (vs37 (vs37 (vs37 vz37))) + +v437 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm37 (snoc37 (snoc37 (snoc37 (snoc37 (snoc37 g a) B) C) D) E) a +v437 = var37 (vs37 (vs37 (vs37 (vs37 vz37)))) + +test37 : {g:_}-> {a:_} -> Tm37 g (arr37 (arr37 a a) (arr37 a a)) +test37 = lam37 (lam37 (app37 v137 (app37 v137 (app37 v137 (app37 v137 (app37 v137 (app37 v137 v037))))))) +Ty38 : Type +Ty38 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty38 : Ty38 +empty38 = \ _, empty, _ => empty + +arr38 : Ty38 -> Ty38 -> Ty38 +arr38 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con38 : Type +Con38 = (Con38 : Type) + ->(nil : Con38) + ->(snoc : Con38 -> Ty38 -> Con38) + -> Con38 + +nil38 : Con38 +nil38 = \ con, nil38, snoc => nil38 + +snoc38 : Con38 -> Ty38 -> Con38 +snoc38 = \ g, a, con, nil38, snoc38 => snoc38 (g con nil38 snoc38) a + +Var38 : Con38 -> Ty38 -> Type +Var38 = \ g, a => + (Var38 : Con38 -> Ty38 -> Type) + -> (vz : (g : _)-> (a : _) -> Var38 (snoc38 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var38 g a -> Var38 (snoc38 g b) a) + -> Var38 g a + +vz38 : {g : _}-> {a : _} -> Var38 (snoc38 g a) a +vz38 = \ var, vz38, vs => vz38 _ _ + +vs38 : {g : _} -> {B : _} -> {a : _} -> Var38 g a -> Var38 (snoc38 g B) a +vs38 = \ x, var, vz38, vs38 => vs38 _ _ _ (x var vz38 vs38) + +Tm38 : Con38 -> Ty38 -> Type +Tm38 = \ g, a => + (Tm38 : Con38 -> Ty38 -> Type) + -> (var : (g : _) -> (a : _) -> Var38 g a -> Tm38 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm38 (snoc38 g a) B -> Tm38 g (arr38 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm38 g (arr38 a B) -> Tm38 g a -> Tm38 g B) + -> Tm38 g a + +var38 : {g : _} -> {a : _} -> Var38 g a -> Tm38 g a +var38 = \ x, tm, var38, lam, app => var38 _ _ x + +lam38 : {g : _} -> {a : _} -> {B : _} -> Tm38 (snoc38 g a) B -> Tm38 g (arr38 a B) +lam38 = \ t, tm, var38, lam38, app => lam38 _ _ _ (t tm var38 lam38 app) + +app38 : {g:_}->{a:_}->{B:_} -> Tm38 g (arr38 a B) -> Tm38 g a -> Tm38 g B +app38 = \ t, u, tm, var38, lam38, app38 => app38 _ _ _ (t tm var38 lam38 app38) (u tm var38 lam38 app38) + +v038 : {g:_}->{a:_} -> Tm38 (snoc38 g a) a +v038 = var38 vz38 + +v138 : {g:_}->{a:_}-> {B:_}-> Tm38 (snoc38 (snoc38 g a) B) a +v138 = var38 (vs38 vz38) + +v238 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm38 (snoc38 (snoc38 (snoc38 g a) B) C) a +v238 = var38 (vs38 (vs38 vz38)) + +v338 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm38 (snoc38 (snoc38 (snoc38 (snoc38 g a) B) C) D) a +v338 = var38 (vs38 (vs38 (vs38 vz38))) + +v438 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm38 (snoc38 (snoc38 (snoc38 (snoc38 (snoc38 g a) B) C) D) E) a +v438 = var38 (vs38 (vs38 (vs38 (vs38 vz38)))) + +test38 : {g:_}-> {a:_} -> Tm38 g (arr38 (arr38 a a) (arr38 a a)) +test38 = lam38 (lam38 (app38 v138 (app38 v138 (app38 v138 (app38 v138 (app38 v138 (app38 v138 v038))))))) +Ty39 : Type +Ty39 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty39 : Ty39 +empty39 = \ _, empty, _ => empty + +arr39 : Ty39 -> Ty39 -> Ty39 +arr39 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con39 : Type +Con39 = (Con39 : Type) + ->(nil : Con39) + ->(snoc : Con39 -> Ty39 -> Con39) + -> Con39 + +nil39 : Con39 +nil39 = \ con, nil39, snoc => nil39 + +snoc39 : Con39 -> Ty39 -> Con39 +snoc39 = \ g, a, con, nil39, snoc39 => snoc39 (g con nil39 snoc39) a + +Var39 : Con39 -> Ty39 -> Type +Var39 = \ g, a => + (Var39 : Con39 -> Ty39 -> Type) + -> (vz : (g : _)-> (a : _) -> Var39 (snoc39 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var39 g a -> Var39 (snoc39 g b) a) + -> Var39 g a + +vz39 : {g : _}-> {a : _} -> Var39 (snoc39 g a) a +vz39 = \ var, vz39, vs => vz39 _ _ + +vs39 : {g : _} -> {B : _} -> {a : _} -> Var39 g a -> Var39 (snoc39 g B) a +vs39 = \ x, var, vz39, vs39 => vs39 _ _ _ (x var vz39 vs39) + +Tm39 : Con39 -> Ty39 -> Type +Tm39 = \ g, a => + (Tm39 : Con39 -> Ty39 -> Type) + -> (var : (g : _) -> (a : _) -> Var39 g a -> Tm39 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm39 (snoc39 g a) B -> Tm39 g (arr39 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm39 g (arr39 a B) -> Tm39 g a -> Tm39 g B) + -> Tm39 g a + +var39 : {g : _} -> {a : _} -> Var39 g a -> Tm39 g a +var39 = \ x, tm, var39, lam, app => var39 _ _ x + +lam39 : {g : _} -> {a : _} -> {B : _} -> Tm39 (snoc39 g a) B -> Tm39 g (arr39 a B) +lam39 = \ t, tm, var39, lam39, app => lam39 _ _ _ (t tm var39 lam39 app) + +app39 : {g:_}->{a:_}->{B:_} -> Tm39 g (arr39 a B) -> Tm39 g a -> Tm39 g B +app39 = \ t, u, tm, var39, lam39, app39 => app39 _ _ _ (t tm var39 lam39 app39) (u tm var39 lam39 app39) + +v039 : {g:_}->{a:_} -> Tm39 (snoc39 g a) a +v039 = var39 vz39 + +v139 : {g:_}->{a:_}-> {B:_}-> Tm39 (snoc39 (snoc39 g a) B) a +v139 = var39 (vs39 vz39) + +v239 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm39 (snoc39 (snoc39 (snoc39 g a) B) C) a +v239 = var39 (vs39 (vs39 vz39)) + +v339 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm39 (snoc39 (snoc39 (snoc39 (snoc39 g a) B) C) D) a +v339 = var39 (vs39 (vs39 (vs39 vz39))) + +v439 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm39 (snoc39 (snoc39 (snoc39 (snoc39 (snoc39 g a) B) C) D) E) a +v439 = var39 (vs39 (vs39 (vs39 (vs39 vz39)))) + +test39 : {g:_}-> {a:_} -> Tm39 g (arr39 (arr39 a a) (arr39 a a)) +test39 = lam39 (lam39 (app39 v139 (app39 v139 (app39 v139 (app39 v139 (app39 v139 (app39 v139 v039))))))) +Ty40 : Type +Ty40 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty40 : Ty40 +empty40 = \ _, empty, _ => empty + +arr40 : Ty40 -> Ty40 -> Ty40 +arr40 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con40 : Type +Con40 = (Con40 : Type) + ->(nil : Con40) + ->(snoc : Con40 -> Ty40 -> Con40) + -> Con40 + +nil40 : Con40 +nil40 = \ con, nil40, snoc => nil40 + +snoc40 : Con40 -> Ty40 -> Con40 +snoc40 = \ g, a, con, nil40, snoc40 => snoc40 (g con nil40 snoc40) a + +Var40 : Con40 -> Ty40 -> Type +Var40 = \ g, a => + (Var40 : Con40 -> Ty40 -> Type) + -> (vz : (g : _)-> (a : _) -> Var40 (snoc40 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var40 g a -> Var40 (snoc40 g b) a) + -> Var40 g a + +vz40 : {g : _}-> {a : _} -> Var40 (snoc40 g a) a +vz40 = \ var, vz40, vs => vz40 _ _ + +vs40 : {g : _} -> {B : _} -> {a : _} -> Var40 g a -> Var40 (snoc40 g B) a +vs40 = \ x, var, vz40, vs40 => vs40 _ _ _ (x var vz40 vs40) + +Tm40 : Con40 -> Ty40 -> Type +Tm40 = \ g, a => + (Tm40 : Con40 -> Ty40 -> Type) + -> (var : (g : _) -> (a : _) -> Var40 g a -> Tm40 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm40 (snoc40 g a) B -> Tm40 g (arr40 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm40 g (arr40 a B) -> Tm40 g a -> Tm40 g B) + -> Tm40 g a + +var40 : {g : _} -> {a : _} -> Var40 g a -> Tm40 g a +var40 = \ x, tm, var40, lam, app => var40 _ _ x + +lam40 : {g : _} -> {a : _} -> {B : _} -> Tm40 (snoc40 g a) B -> Tm40 g (arr40 a B) +lam40 = \ t, tm, var40, lam40, app => lam40 _ _ _ (t tm var40 lam40 app) + +app40 : {g:_}->{a:_}->{B:_} -> Tm40 g (arr40 a B) -> Tm40 g a -> Tm40 g B +app40 = \ t, u, tm, var40, lam40, app40 => app40 _ _ _ (t tm var40 lam40 app40) (u tm var40 lam40 app40) + +v040 : {g:_}->{a:_} -> Tm40 (snoc40 g a) a +v040 = var40 vz40 + +v140 : {g:_}->{a:_}-> {B:_}-> Tm40 (snoc40 (snoc40 g a) B) a +v140 = var40 (vs40 vz40) + +v240 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm40 (snoc40 (snoc40 (snoc40 g a) B) C) a +v240 = var40 (vs40 (vs40 vz40)) + +v340 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm40 (snoc40 (snoc40 (snoc40 (snoc40 g a) B) C) D) a +v340 = var40 (vs40 (vs40 (vs40 vz40))) + +v440 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm40 (snoc40 (snoc40 (snoc40 (snoc40 (snoc40 g a) B) C) D) E) a +v440 = var40 (vs40 (vs40 (vs40 (vs40 vz40)))) + +test40 : {g:_}-> {a:_} -> Tm40 g (arr40 (arr40 a a) (arr40 a a)) +test40 = lam40 (lam40 (app40 v140 (app40 v140 (app40 v140 (app40 v140 (app40 v140 (app40 v140 v040))))))) +Ty41 : Type +Ty41 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty41 : Ty41 +empty41 = \ _, empty, _ => empty + +arr41 : Ty41 -> Ty41 -> Ty41 +arr41 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con41 : Type +Con41 = (Con41 : Type) + ->(nil : Con41) + ->(snoc : Con41 -> Ty41 -> Con41) + -> Con41 + +nil41 : Con41 +nil41 = \ con, nil41, snoc => nil41 + +snoc41 : Con41 -> Ty41 -> Con41 +snoc41 = \ g, a, con, nil41, snoc41 => snoc41 (g con nil41 snoc41) a + +Var41 : Con41 -> Ty41 -> Type +Var41 = \ g, a => + (Var41 : Con41 -> Ty41 -> Type) + -> (vz : (g : _)-> (a : _) -> Var41 (snoc41 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var41 g a -> Var41 (snoc41 g b) a) + -> Var41 g a + +vz41 : {g : _}-> {a : _} -> Var41 (snoc41 g a) a +vz41 = \ var, vz41, vs => vz41 _ _ + +vs41 : {g : _} -> {B : _} -> {a : _} -> Var41 g a -> Var41 (snoc41 g B) a +vs41 = \ x, var, vz41, vs41 => vs41 _ _ _ (x var vz41 vs41) + +Tm41 : Con41 -> Ty41 -> Type +Tm41 = \ g, a => + (Tm41 : Con41 -> Ty41 -> Type) + -> (var : (g : _) -> (a : _) -> Var41 g a -> Tm41 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm41 (snoc41 g a) B -> Tm41 g (arr41 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm41 g (arr41 a B) -> Tm41 g a -> Tm41 g B) + -> Tm41 g a + +var41 : {g : _} -> {a : _} -> Var41 g a -> Tm41 g a +var41 = \ x, tm, var41, lam, app => var41 _ _ x + +lam41 : {g : _} -> {a : _} -> {B : _} -> Tm41 (snoc41 g a) B -> Tm41 g (arr41 a B) +lam41 = \ t, tm, var41, lam41, app => lam41 _ _ _ (t tm var41 lam41 app) + +app41 : {g:_}->{a:_}->{B:_} -> Tm41 g (arr41 a B) -> Tm41 g a -> Tm41 g B +app41 = \ t, u, tm, var41, lam41, app41 => app41 _ _ _ (t tm var41 lam41 app41) (u tm var41 lam41 app41) + +v041 : {g:_}->{a:_} -> Tm41 (snoc41 g a) a +v041 = var41 vz41 + +v141 : {g:_}->{a:_}-> {B:_}-> Tm41 (snoc41 (snoc41 g a) B) a +v141 = var41 (vs41 vz41) + +v241 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm41 (snoc41 (snoc41 (snoc41 g a) B) C) a +v241 = var41 (vs41 (vs41 vz41)) + +v341 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm41 (snoc41 (snoc41 (snoc41 (snoc41 g a) B) C) D) a +v341 = var41 (vs41 (vs41 (vs41 vz41))) + +v441 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm41 (snoc41 (snoc41 (snoc41 (snoc41 (snoc41 g a) B) C) D) E) a +v441 = var41 (vs41 (vs41 (vs41 (vs41 vz41)))) + +test41 : {g:_}-> {a:_} -> Tm41 g (arr41 (arr41 a a) (arr41 a a)) +test41 = lam41 (lam41 (app41 v141 (app41 v141 (app41 v141 (app41 v141 (app41 v141 (app41 v141 v041))))))) +Ty42 : Type +Ty42 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty42 : Ty42 +empty42 = \ _, empty, _ => empty + +arr42 : Ty42 -> Ty42 -> Ty42 +arr42 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con42 : Type +Con42 = (Con42 : Type) + ->(nil : Con42) + ->(snoc : Con42 -> Ty42 -> Con42) + -> Con42 + +nil42 : Con42 +nil42 = \ con, nil42, snoc => nil42 + +snoc42 : Con42 -> Ty42 -> Con42 +snoc42 = \ g, a, con, nil42, snoc42 => snoc42 (g con nil42 snoc42) a + +Var42 : Con42 -> Ty42 -> Type +Var42 = \ g, a => + (Var42 : Con42 -> Ty42 -> Type) + -> (vz : (g : _)-> (a : _) -> Var42 (snoc42 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var42 g a -> Var42 (snoc42 g b) a) + -> Var42 g a + +vz42 : {g : _}-> {a : _} -> Var42 (snoc42 g a) a +vz42 = \ var, vz42, vs => vz42 _ _ + +vs42 : {g : _} -> {B : _} -> {a : _} -> Var42 g a -> Var42 (snoc42 g B) a +vs42 = \ x, var, vz42, vs42 => vs42 _ _ _ (x var vz42 vs42) + +Tm42 : Con42 -> Ty42 -> Type +Tm42 = \ g, a => + (Tm42 : Con42 -> Ty42 -> Type) + -> (var : (g : _) -> (a : _) -> Var42 g a -> Tm42 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm42 (snoc42 g a) B -> Tm42 g (arr42 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm42 g (arr42 a B) -> Tm42 g a -> Tm42 g B) + -> Tm42 g a + +var42 : {g : _} -> {a : _} -> Var42 g a -> Tm42 g a +var42 = \ x, tm, var42, lam, app => var42 _ _ x + +lam42 : {g : _} -> {a : _} -> {B : _} -> Tm42 (snoc42 g a) B -> Tm42 g (arr42 a B) +lam42 = \ t, tm, var42, lam42, app => lam42 _ _ _ (t tm var42 lam42 app) + +app42 : {g:_}->{a:_}->{B:_} -> Tm42 g (arr42 a B) -> Tm42 g a -> Tm42 g B +app42 = \ t, u, tm, var42, lam42, app42 => app42 _ _ _ (t tm var42 lam42 app42) (u tm var42 lam42 app42) + +v042 : {g:_}->{a:_} -> Tm42 (snoc42 g a) a +v042 = var42 vz42 + +v142 : {g:_}->{a:_}-> {B:_}-> Tm42 (snoc42 (snoc42 g a) B) a +v142 = var42 (vs42 vz42) + +v242 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm42 (snoc42 (snoc42 (snoc42 g a) B) C) a +v242 = var42 (vs42 (vs42 vz42)) + +v342 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm42 (snoc42 (snoc42 (snoc42 (snoc42 g a) B) C) D) a +v342 = var42 (vs42 (vs42 (vs42 vz42))) + +v442 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm42 (snoc42 (snoc42 (snoc42 (snoc42 (snoc42 g a) B) C) D) E) a +v442 = var42 (vs42 (vs42 (vs42 (vs42 vz42)))) + +test42 : {g:_}-> {a:_} -> Tm42 g (arr42 (arr42 a a) (arr42 a a)) +test42 = lam42 (lam42 (app42 v142 (app42 v142 (app42 v142 (app42 v142 (app42 v142 (app42 v142 v042))))))) +Ty43 : Type +Ty43 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty43 : Ty43 +empty43 = \ _, empty, _ => empty + +arr43 : Ty43 -> Ty43 -> Ty43 +arr43 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con43 : Type +Con43 = (Con43 : Type) + ->(nil : Con43) + ->(snoc : Con43 -> Ty43 -> Con43) + -> Con43 + +nil43 : Con43 +nil43 = \ con, nil43, snoc => nil43 + +snoc43 : Con43 -> Ty43 -> Con43 +snoc43 = \ g, a, con, nil43, snoc43 => snoc43 (g con nil43 snoc43) a + +Var43 : Con43 -> Ty43 -> Type +Var43 = \ g, a => + (Var43 : Con43 -> Ty43 -> Type) + -> (vz : (g : _)-> (a : _) -> Var43 (snoc43 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var43 g a -> Var43 (snoc43 g b) a) + -> Var43 g a + +vz43 : {g : _}-> {a : _} -> Var43 (snoc43 g a) a +vz43 = \ var, vz43, vs => vz43 _ _ + +vs43 : {g : _} -> {B : _} -> {a : _} -> Var43 g a -> Var43 (snoc43 g B) a +vs43 = \ x, var, vz43, vs43 => vs43 _ _ _ (x var vz43 vs43) + +Tm43 : Con43 -> Ty43 -> Type +Tm43 = \ g, a => + (Tm43 : Con43 -> Ty43 -> Type) + -> (var : (g : _) -> (a : _) -> Var43 g a -> Tm43 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm43 (snoc43 g a) B -> Tm43 g (arr43 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm43 g (arr43 a B) -> Tm43 g a -> Tm43 g B) + -> Tm43 g a + +var43 : {g : _} -> {a : _} -> Var43 g a -> Tm43 g a +var43 = \ x, tm, var43, lam, app => var43 _ _ x + +lam43 : {g : _} -> {a : _} -> {B : _} -> Tm43 (snoc43 g a) B -> Tm43 g (arr43 a B) +lam43 = \ t, tm, var43, lam43, app => lam43 _ _ _ (t tm var43 lam43 app) + +app43 : {g:_}->{a:_}->{B:_} -> Tm43 g (arr43 a B) -> Tm43 g a -> Tm43 g B +app43 = \ t, u, tm, var43, lam43, app43 => app43 _ _ _ (t tm var43 lam43 app43) (u tm var43 lam43 app43) + +v043 : {g:_}->{a:_} -> Tm43 (snoc43 g a) a +v043 = var43 vz43 + +v143 : {g:_}->{a:_}-> {B:_}-> Tm43 (snoc43 (snoc43 g a) B) a +v143 = var43 (vs43 vz43) + +v243 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm43 (snoc43 (snoc43 (snoc43 g a) B) C) a +v243 = var43 (vs43 (vs43 vz43)) + +v343 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm43 (snoc43 (snoc43 (snoc43 (snoc43 g a) B) C) D) a +v343 = var43 (vs43 (vs43 (vs43 vz43))) + +v443 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm43 (snoc43 (snoc43 (snoc43 (snoc43 (snoc43 g a) B) C) D) E) a +v443 = var43 (vs43 (vs43 (vs43 (vs43 vz43)))) + +test43 : {g:_}-> {a:_} -> Tm43 g (arr43 (arr43 a a) (arr43 a a)) +test43 = lam43 (lam43 (app43 v143 (app43 v143 (app43 v143 (app43 v143 (app43 v143 (app43 v143 v043))))))) +Ty44 : Type +Ty44 = (Ty : Type) + ->(empty : Ty) + ->(arr : Ty -> Ty -> Ty) + -> Ty + +empty44 : Ty44 +empty44 = \ _, empty, _ => empty + +arr44 : Ty44 -> Ty44 -> Ty44 +arr44 = \ a, b, ty, empty, arr => arr (a ty empty arr) (b ty empty arr) + +Con44 : Type +Con44 = (Con44 : Type) + ->(nil : Con44) + ->(snoc : Con44 -> Ty44 -> Con44) + -> Con44 + +nil44 : Con44 +nil44 = \ con, nil44, snoc => nil44 + +snoc44 : Con44 -> Ty44 -> Con44 +snoc44 = \ g, a, con, nil44, snoc44 => snoc44 (g con nil44 snoc44) a + +Var44 : Con44 -> Ty44 -> Type +Var44 = \ g, a => + (Var44 : Con44 -> Ty44 -> Type) + -> (vz : (g : _)-> (a : _) -> Var44 (snoc44 g a) a) + -> (vs : (g : _)-> (b : _) -> (a : _) -> Var44 g a -> Var44 (snoc44 g b) a) + -> Var44 g a + +vz44 : {g : _}-> {a : _} -> Var44 (snoc44 g a) a +vz44 = \ var, vz44, vs => vz44 _ _ + +vs44 : {g : _} -> {B : _} -> {a : _} -> Var44 g a -> Var44 (snoc44 g B) a +vs44 = \ x, var, vz44, vs44 => vs44 _ _ _ (x var vz44 vs44) + +Tm44 : Con44 -> Ty44 -> Type +Tm44 = \ g, a => + (Tm44 : Con44 -> Ty44 -> Type) + -> (var : (g : _) -> (a : _) -> Var44 g a -> Tm44 g a) + -> (lam : (g : _) -> (a : _) -> (B : _) -> Tm44 (snoc44 g a) B -> Tm44 g (arr44 a B)) + -> (app : (g : _) -> (a : _) -> (B : _) -> Tm44 g (arr44 a B) -> Tm44 g a -> Tm44 g B) + -> Tm44 g a + +var44 : {g : _} -> {a : _} -> Var44 g a -> Tm44 g a +var44 = \ x, tm, var44, lam, app => var44 _ _ x + +lam44 : {g : _} -> {a : _} -> {B : _} -> Tm44 (snoc44 g a) B -> Tm44 g (arr44 a B) +lam44 = \ t, tm, var44, lam44, app => lam44 _ _ _ (t tm var44 lam44 app) + +app44 : {g:_}->{a:_}->{B:_} -> Tm44 g (arr44 a B) -> Tm44 g a -> Tm44 g B +app44 = \ t, u, tm, var44, lam44, app44 => app44 _ _ _ (t tm var44 lam44 app44) (u tm var44 lam44 app44) + +v044 : {g:_}->{a:_} -> Tm44 (snoc44 g a) a +v044 = var44 vz44 + +v144 : {g:_}->{a:_}-> {B:_}-> Tm44 (snoc44 (snoc44 g a) B) a +v144 = var44 (vs44 vz44) + +v244 : {g:_}-> {a:_}-> {B:_}-> {C:_} -> Tm44 (snoc44 (snoc44 (snoc44 g a) B) C) a +v244 = var44 (vs44 (vs44 vz44)) + +v344 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_} -> Tm44 (snoc44 (snoc44 (snoc44 (snoc44 g a) B) C) D) a +v344 = var44 (vs44 (vs44 (vs44 vz44))) + +v444 : {g:_}-> {a:_}-> {B:_}-> {C:_}-> {D:_}-> {E:_}-> Tm44 (snoc44 (snoc44 (snoc44 (snoc44 (snoc44 g a) B) C) D) E) a +v444 = var44 (vs44 (vs44 (vs44 (vs44 vz44)))) + +test44 : {g:_}-> {a:_} -> Tm44 g (arr44 (arr44 a a) (arr44 a a)) +test44 = lam44 (lam44 (app44 v144 (app44 v144 (app44 v144 (app44 v144 (app44 v144 (app44 v144 v044))))))) diff --git a/tests/idris2/perf2202/expected b/tests/idris2/perf2202/expected new file mode 100644 index 0000000000..44cb143d66 --- /dev/null +++ b/tests/idris2/perf2202/expected @@ -0,0 +1,2 @@ +1/1: Building many10000 (many10000.idr) +1/1: Building Church (Church.idr) diff --git a/tests/idris2/perf2202/many10000.idr b/tests/idris2/perf2202/many10000.idr new file mode 100644 index 0000000000..59568dd334 --- /dev/null +++ b/tests/idris2/perf2202/many10000.idr @@ -0,0 +1,7499 @@ +x1 : Nat +x1 = 1 + +x2 : Nat +x2 = 2 + +x3 : Nat +x3 = 3 + +x4 : Nat +x4 = 4 + +x5 : Nat +x5 = 5 + +x6 : Nat +x6 = 6 + +x7 : Nat +x7 = 7 + +x8 : Nat +x8 = 8 + +x9 : Nat +x9 = 9 + +x10 : Nat +x10 = 10 + +x11 : Nat +x11 = 11 + +x12 : Nat +x12 = 12 + +x13 : Nat +x13 = 13 + +x14 : Nat +x14 = 14 + +x15 : Nat +x15 = 15 + +x16 : Nat +x16 = 16 + +x17 : Nat +x17 = 17 + +x18 : Nat +x18 = 18 + +x19 : Nat +x19 = 19 + +x20 : Nat +x20 = 20 + +x21 : Nat +x21 = 21 + +x22 : Nat +x22 = 22 + +x23 : Nat +x23 = 23 + +x24 : Nat +x24 = 24 + +x25 : Nat +x25 = 25 + +x26 : Nat +x26 = 26 + +x27 : Nat +x27 = 27 + +x28 : Nat +x28 = 28 + +x29 : Nat +x29 = 29 + +x30 : Nat +x30 = 30 + +x31 : Nat +x31 = 31 + +x32 : Nat +x32 = 32 + +x33 : Nat +x33 = 33 + +x34 : Nat +x34 = 34 + +x35 : Nat +x35 = 35 + +x36 : Nat +x36 = 36 + +x37 : Nat +x37 = 37 + +x38 : Nat +x38 = 38 + +x39 : Nat +x39 = 39 + +x40 : Nat +x40 = 40 + +x41 : Nat +x41 = 41 + +x42 : Nat +x42 = 42 + +x43 : Nat +x43 = 43 + +x44 : Nat +x44 = 44 + +x45 : Nat +x45 = 45 + +x46 : Nat +x46 = 46 + +x47 : Nat +x47 = 47 + +x48 : Nat +x48 = 48 + +x49 : Nat +x49 = 49 + +x50 : Nat +x50 = 50 + +x51 : Nat +x51 = 51 + +x52 : Nat +x52 = 52 + +x53 : Nat +x53 = 53 + +x54 : Nat +x54 = 54 + +x55 : Nat +x55 = 55 + +x56 : Nat +x56 = 56 + +x57 : Nat +x57 = 57 + +x58 : Nat +x58 = 58 + +x59 : Nat +x59 = 59 + +x60 : Nat +x60 = 60 + +x61 : Nat +x61 = 61 + +x62 : Nat +x62 = 62 + +x63 : Nat +x63 = 63 + +x64 : Nat +x64 = 64 + +x65 : Nat +x65 = 65 + +x66 : Nat +x66 = 66 + +x67 : Nat +x67 = 67 + +x68 : Nat +x68 = 68 + +x69 : Nat +x69 = 69 + +x70 : Nat +x70 = 70 + +x71 : Nat +x71 = 71 + +x72 : Nat +x72 = 72 + +x73 : Nat +x73 = 73 + +x74 : Nat +x74 = 74 + +x75 : Nat +x75 = 75 + +x76 : Nat +x76 = 76 + +x77 : Nat +x77 = 77 + +x78 : Nat +x78 = 78 + +x79 : Nat +x79 = 79 + +x80 : Nat +x80 = 80 + +x81 : Nat +x81 = 81 + +x82 : Nat +x82 = 82 + +x83 : Nat +x83 = 83 + +x84 : Nat +x84 = 84 + +x85 : Nat +x85 = 85 + +x86 : Nat +x86 = 86 + +x87 : Nat +x87 = 87 + +x88 : Nat +x88 = 88 + +x89 : Nat +x89 = 89 + +x90 : Nat +x90 = 90 + +x91 : Nat +x91 = 91 + +x92 : Nat +x92 = 92 + +x93 : Nat +x93 = 93 + +x94 : Nat +x94 = 94 + +x95 : Nat +x95 = 95 + +x96 : Nat +x96 = 96 + +x97 : Nat +x97 = 97 + +x98 : Nat +x98 = 98 + +x99 : Nat +x99 = 99 + +x100 : Nat +x100 = 100 + +x101 : Nat +x101 = 101 + +x102 : Nat +x102 = 102 + +x103 : Nat +x103 = 103 + +x104 : Nat +x104 = 104 + +x105 : Nat +x105 = 105 + +x106 : Nat +x106 = 106 + +x107 : Nat +x107 = 107 + +x108 : Nat +x108 = 108 + +x109 : Nat +x109 = 109 + +x110 : Nat +x110 = 110 + +x111 : Nat +x111 = 111 + +x112 : Nat +x112 = 112 + +x113 : Nat +x113 = 113 + +x114 : Nat +x114 = 114 + +x115 : Nat +x115 = 115 + +x116 : Nat +x116 = 116 + +x117 : Nat +x117 = 117 + +x118 : Nat +x118 = 118 + +x119 : Nat +x119 = 119 + +x120 : Nat +x120 = 120 + +x121 : Nat +x121 = 121 + +x122 : Nat +x122 = 122 + +x123 : Nat +x123 = 123 + +x124 : Nat +x124 = 124 + +x125 : Nat +x125 = 125 + +x126 : Nat +x126 = 126 + +x127 : Nat +x127 = 127 + +x128 : Nat +x128 = 128 + +x129 : Nat +x129 = 129 + +x130 : Nat +x130 = 130 + +x131 : Nat +x131 = 131 + +x132 : Nat +x132 = 132 + +x133 : Nat +x133 = 133 + +x134 : Nat +x134 = 134 + +x135 : Nat +x135 = 135 + +x136 : Nat +x136 = 136 + +x137 : Nat +x137 = 137 + +x138 : Nat +x138 = 138 + +x139 : Nat +x139 = 139 + +x140 : Nat +x140 = 140 + +x141 : Nat +x141 = 141 + +x142 : Nat +x142 = 142 + +x143 : Nat +x143 = 143 + +x144 : Nat +x144 = 144 + +x145 : Nat +x145 = 145 + +x146 : Nat +x146 = 146 + +x147 : Nat +x147 = 147 + +x148 : Nat +x148 = 148 + +x149 : Nat +x149 = 149 + +x150 : Nat +x150 = 150 + +x151 : Nat +x151 = 151 + +x152 : Nat +x152 = 152 + +x153 : Nat +x153 = 153 + +x154 : Nat +x154 = 154 + +x155 : Nat +x155 = 155 + +x156 : Nat +x156 = 156 + +x157 : Nat +x157 = 157 + +x158 : Nat +x158 = 158 + +x159 : Nat +x159 = 159 + +x160 : Nat +x160 = 160 + +x161 : Nat +x161 = 161 + +x162 : Nat +x162 = 162 + +x163 : Nat +x163 = 163 + +x164 : Nat +x164 = 164 + +x165 : Nat +x165 = 165 + +x166 : Nat +x166 = 166 + +x167 : Nat +x167 = 167 + +x168 : Nat +x168 = 168 + +x169 : Nat +x169 = 169 + +x170 : Nat +x170 = 170 + +x171 : Nat +x171 = 171 + +x172 : Nat +x172 = 172 + +x173 : Nat +x173 = 173 + +x174 : Nat +x174 = 174 + +x175 : Nat +x175 = 175 + +x176 : Nat +x176 = 176 + +x177 : Nat +x177 = 177 + +x178 : Nat +x178 = 178 + +x179 : Nat +x179 = 179 + +x180 : Nat +x180 = 180 + +x181 : Nat +x181 = 181 + +x182 : Nat +x182 = 182 + +x183 : Nat +x183 = 183 + +x184 : Nat +x184 = 184 + +x185 : Nat +x185 = 185 + +x186 : Nat +x186 = 186 + +x187 : Nat +x187 = 187 + +x188 : Nat +x188 = 188 + +x189 : Nat +x189 = 189 + +x190 : Nat +x190 = 190 + +x191 : Nat +x191 = 191 + +x192 : Nat +x192 = 192 + +x193 : Nat +x193 = 193 + +x194 : Nat +x194 = 194 + +x195 : Nat +x195 = 195 + +x196 : Nat +x196 = 196 + +x197 : Nat +x197 = 197 + +x198 : Nat +x198 = 198 + +x199 : Nat +x199 = 199 + +x200 : Nat +x200 = 200 + +x201 : Nat +x201 = 201 + +x202 : Nat +x202 = 202 + +x203 : Nat +x203 = 203 + +x204 : Nat +x204 = 204 + +x205 : Nat +x205 = 205 + +x206 : Nat +x206 = 206 + +x207 : Nat +x207 = 207 + +x208 : Nat +x208 = 208 + +x209 : Nat +x209 = 209 + +x210 : Nat +x210 = 210 + +x211 : Nat +x211 = 211 + +x212 : Nat +x212 = 212 + +x213 : Nat +x213 = 213 + +x214 : Nat +x214 = 214 + +x215 : Nat +x215 = 215 + +x216 : Nat +x216 = 216 + +x217 : Nat +x217 = 217 + +x218 : Nat +x218 = 218 + +x219 : Nat +x219 = 219 + +x220 : Nat +x220 = 220 + +x221 : Nat +x221 = 221 + +x222 : Nat +x222 = 222 + +x223 : Nat +x223 = 223 + +x224 : Nat +x224 = 224 + +x225 : Nat +x225 = 225 + +x226 : Nat +x226 = 226 + +x227 : Nat +x227 = 227 + +x228 : Nat +x228 = 228 + +x229 : Nat +x229 = 229 + +x230 : Nat +x230 = 230 + +x231 : Nat +x231 = 231 + +x232 : Nat +x232 = 232 + +x233 : Nat +x233 = 233 + +x234 : Nat +x234 = 234 + +x235 : Nat +x235 = 235 + +x236 : Nat +x236 = 236 + +x237 : Nat +x237 = 237 + +x238 : Nat +x238 = 238 + +x239 : Nat +x239 = 239 + +x240 : Nat +x240 = 240 + +x241 : Nat +x241 = 241 + +x242 : Nat +x242 = 242 + +x243 : Nat +x243 = 243 + +x244 : Nat +x244 = 244 + +x245 : Nat +x245 = 245 + +x246 : Nat +x246 = 246 + +x247 : Nat +x247 = 247 + +x248 : Nat +x248 = 248 + +x249 : Nat +x249 = 249 + +x250 : Nat +x250 = 250 + +x251 : Nat +x251 = 251 + +x252 : Nat +x252 = 252 + +x253 : Nat +x253 = 253 + +x254 : Nat +x254 = 254 + +x255 : Nat +x255 = 255 + +x256 : Nat +x256 = 256 + +x257 : Nat +x257 = 257 + +x258 : Nat +x258 = 258 + +x259 : Nat +x259 = 259 + +x260 : Nat +x260 = 260 + +x261 : Nat +x261 = 261 + +x262 : Nat +x262 = 262 + +x263 : Nat +x263 = 263 + +x264 : Nat +x264 = 264 + +x265 : Nat +x265 = 265 + +x266 : Nat +x266 = 266 + +x267 : Nat +x267 = 267 + +x268 : Nat +x268 = 268 + +x269 : Nat +x269 = 269 + +x270 : Nat +x270 = 270 + +x271 : Nat +x271 = 271 + +x272 : Nat +x272 = 272 + +x273 : Nat +x273 = 273 + +x274 : Nat +x274 = 274 + +x275 : Nat +x275 = 275 + +x276 : Nat +x276 = 276 + +x277 : Nat +x277 = 277 + +x278 : Nat +x278 = 278 + +x279 : Nat +x279 = 279 + +x280 : Nat +x280 = 280 + +x281 : Nat +x281 = 281 + +x282 : Nat +x282 = 282 + +x283 : Nat +x283 = 283 + +x284 : Nat +x284 = 284 + +x285 : Nat +x285 = 285 + +x286 : Nat +x286 = 286 + +x287 : Nat +x287 = 287 + +x288 : Nat +x288 = 288 + +x289 : Nat +x289 = 289 + +x290 : Nat +x290 = 290 + +x291 : Nat +x291 = 291 + +x292 : Nat +x292 = 292 + +x293 : Nat +x293 = 293 + +x294 : Nat +x294 = 294 + +x295 : Nat +x295 = 295 + +x296 : Nat +x296 = 296 + +x297 : Nat +x297 = 297 + +x298 : Nat +x298 = 298 + +x299 : Nat +x299 = 299 + +x300 : Nat +x300 = 300 + +x301 : Nat +x301 = 301 + +x302 : Nat +x302 = 302 + +x303 : Nat +x303 = 303 + +x304 : Nat +x304 = 304 + +x305 : Nat +x305 = 305 + +x306 : Nat +x306 = 306 + +x307 : Nat +x307 = 307 + +x308 : Nat +x308 = 308 + +x309 : Nat +x309 = 309 + +x310 : Nat +x310 = 310 + +x311 : Nat +x311 = 311 + +x312 : Nat +x312 = 312 + +x313 : Nat +x313 = 313 + +x314 : Nat +x314 = 314 + +x315 : Nat +x315 = 315 + +x316 : Nat +x316 = 316 + +x317 : Nat +x317 = 317 + +x318 : Nat +x318 = 318 + +x319 : Nat +x319 = 319 + +x320 : Nat +x320 = 320 + +x321 : Nat +x321 = 321 + +x322 : Nat +x322 = 322 + +x323 : Nat +x323 = 323 + +x324 : Nat +x324 = 324 + +x325 : Nat +x325 = 325 + +x326 : Nat +x326 = 326 + +x327 : Nat +x327 = 327 + +x328 : Nat +x328 = 328 + +x329 : Nat +x329 = 329 + +x330 : Nat +x330 = 330 + +x331 : Nat +x331 = 331 + +x332 : Nat +x332 = 332 + +x333 : Nat +x333 = 333 + +x334 : Nat +x334 = 334 + +x335 : Nat +x335 = 335 + +x336 : Nat +x336 = 336 + +x337 : Nat +x337 = 337 + +x338 : Nat +x338 = 338 + +x339 : Nat +x339 = 339 + +x340 : Nat +x340 = 340 + +x341 : Nat +x341 = 341 + +x342 : Nat +x342 = 342 + +x343 : Nat +x343 = 343 + +x344 : Nat +x344 = 344 + +x345 : Nat +x345 = 345 + +x346 : Nat +x346 = 346 + +x347 : Nat +x347 = 347 + +x348 : Nat +x348 = 348 + +x349 : Nat +x349 = 349 + +x350 : Nat +x350 = 350 + +x351 : Nat +x351 = 351 + +x352 : Nat +x352 = 352 + +x353 : Nat +x353 = 353 + +x354 : Nat +x354 = 354 + +x355 : Nat +x355 = 355 + +x356 : Nat +x356 = 356 + +x357 : Nat +x357 = 357 + +x358 : Nat +x358 = 358 + +x359 : Nat +x359 = 359 + +x360 : Nat +x360 = 360 + +x361 : Nat +x361 = 361 + +x362 : Nat +x362 = 362 + +x363 : Nat +x363 = 363 + +x364 : Nat +x364 = 364 + +x365 : Nat +x365 = 365 + +x366 : Nat +x366 = 366 + +x367 : Nat +x367 = 367 + +x368 : Nat +x368 = 368 + +x369 : Nat +x369 = 369 + +x370 : Nat +x370 = 370 + +x371 : Nat +x371 = 371 + +x372 : Nat +x372 = 372 + +x373 : Nat +x373 = 373 + +x374 : Nat +x374 = 374 + +x375 : Nat +x375 = 375 + +x376 : Nat +x376 = 376 + +x377 : Nat +x377 = 377 + +x378 : Nat +x378 = 378 + +x379 : Nat +x379 = 379 + +x380 : Nat +x380 = 380 + +x381 : Nat +x381 = 381 + +x382 : Nat +x382 = 382 + +x383 : Nat +x383 = 383 + +x384 : Nat +x384 = 384 + +x385 : Nat +x385 = 385 + +x386 : Nat +x386 = 386 + +x387 : Nat +x387 = 387 + +x388 : Nat +x388 = 388 + +x389 : Nat +x389 = 389 + +x390 : Nat +x390 = 390 + +x391 : Nat +x391 = 391 + +x392 : Nat +x392 = 392 + +x393 : Nat +x393 = 393 + +x394 : Nat +x394 = 394 + +x395 : Nat +x395 = 395 + +x396 : Nat +x396 = 396 + +x397 : Nat +x397 = 397 + +x398 : Nat +x398 = 398 + +x399 : Nat +x399 = 399 + +x400 : Nat +x400 = 400 + +x401 : Nat +x401 = 401 + +x402 : Nat +x402 = 402 + +x403 : Nat +x403 = 403 + +x404 : Nat +x404 = 404 + +x405 : Nat +x405 = 405 + +x406 : Nat +x406 = 406 + +x407 : Nat +x407 = 407 + +x408 : Nat +x408 = 408 + +x409 : Nat +x409 = 409 + +x410 : Nat +x410 = 410 + +x411 : Nat +x411 = 411 + +x412 : Nat +x412 = 412 + +x413 : Nat +x413 = 413 + +x414 : Nat +x414 = 414 + +x415 : Nat +x415 = 415 + +x416 : Nat +x416 = 416 + +x417 : Nat +x417 = 417 + +x418 : Nat +x418 = 418 + +x419 : Nat +x419 = 419 + +x420 : Nat +x420 = 420 + +x421 : Nat +x421 = 421 + +x422 : Nat +x422 = 422 + +x423 : Nat +x423 = 423 + +x424 : Nat +x424 = 424 + +x425 : Nat +x425 = 425 + +x426 : Nat +x426 = 426 + +x427 : Nat +x427 = 427 + +x428 : Nat +x428 = 428 + +x429 : Nat +x429 = 429 + +x430 : Nat +x430 = 430 + +x431 : Nat +x431 = 431 + +x432 : Nat +x432 = 432 + +x433 : Nat +x433 = 433 + +x434 : Nat +x434 = 434 + +x435 : Nat +x435 = 435 + +x436 : Nat +x436 = 436 + +x437 : Nat +x437 = 437 + +x438 : Nat +x438 = 438 + +x439 : Nat +x439 = 439 + +x440 : Nat +x440 = 440 + +x441 : Nat +x441 = 441 + +x442 : Nat +x442 = 442 + +x443 : Nat +x443 = 443 + +x444 : Nat +x444 = 444 + +x445 : Nat +x445 = 445 + +x446 : Nat +x446 = 446 + +x447 : Nat +x447 = 447 + +x448 : Nat +x448 = 448 + +x449 : Nat +x449 = 449 + +x450 : Nat +x450 = 450 + +x451 : Nat +x451 = 451 + +x452 : Nat +x452 = 452 + +x453 : Nat +x453 = 453 + +x454 : Nat +x454 = 454 + +x455 : Nat +x455 = 455 + +x456 : Nat +x456 = 456 + +x457 : Nat +x457 = 457 + +x458 : Nat +x458 = 458 + +x459 : Nat +x459 = 459 + +x460 : Nat +x460 = 460 + +x461 : Nat +x461 = 461 + +x462 : Nat +x462 = 462 + +x463 : Nat +x463 = 463 + +x464 : Nat +x464 = 464 + +x465 : Nat +x465 = 465 + +x466 : Nat +x466 = 466 + +x467 : Nat +x467 = 467 + +x468 : Nat +x468 = 468 + +x469 : Nat +x469 = 469 + +x470 : Nat +x470 = 470 + +x471 : Nat +x471 = 471 + +x472 : Nat +x472 = 472 + +x473 : Nat +x473 = 473 + +x474 : Nat +x474 = 474 + +x475 : Nat +x475 = 475 + +x476 : Nat +x476 = 476 + +x477 : Nat +x477 = 477 + +x478 : Nat +x478 = 478 + +x479 : Nat +x479 = 479 + +x480 : Nat +x480 = 480 + +x481 : Nat +x481 = 481 + +x482 : Nat +x482 = 482 + +x483 : Nat +x483 = 483 + +x484 : Nat +x484 = 484 + +x485 : Nat +x485 = 485 + +x486 : Nat +x486 = 486 + +x487 : Nat +x487 = 487 + +x488 : Nat +x488 = 488 + +x489 : Nat +x489 = 489 + +x490 : Nat +x490 = 490 + +x491 : Nat +x491 = 491 + +x492 : Nat +x492 = 492 + +x493 : Nat +x493 = 493 + +x494 : Nat +x494 = 494 + +x495 : Nat +x495 = 495 + +x496 : Nat +x496 = 496 + +x497 : Nat +x497 = 497 + +x498 : Nat +x498 = 498 + +x499 : Nat +x499 = 499 + +x500 : Nat +x500 = 500 + +x501 : Nat +x501 = 501 + +x502 : Nat +x502 = 502 + +x503 : Nat +x503 = 503 + +x504 : Nat +x504 = 504 + +x505 : Nat +x505 = 505 + +x506 : Nat +x506 = 506 + +x507 : Nat +x507 = 507 + +x508 : Nat +x508 = 508 + +x509 : Nat +x509 = 509 + +x510 : Nat +x510 = 510 + +x511 : Nat +x511 = 511 + +x512 : Nat +x512 = 512 + +x513 : Nat +x513 = 513 + +x514 : Nat +x514 = 514 + +x515 : Nat +x515 = 515 + +x516 : Nat +x516 = 516 + +x517 : Nat +x517 = 517 + +x518 : Nat +x518 = 518 + +x519 : Nat +x519 = 519 + +x520 : Nat +x520 = 520 + +x521 : Nat +x521 = 521 + +x522 : Nat +x522 = 522 + +x523 : Nat +x523 = 523 + +x524 : Nat +x524 = 524 + +x525 : Nat +x525 = 525 + +x526 : Nat +x526 = 526 + +x527 : Nat +x527 = 527 + +x528 : Nat +x528 = 528 + +x529 : Nat +x529 = 529 + +x530 : Nat +x530 = 530 + +x531 : Nat +x531 = 531 + +x532 : Nat +x532 = 532 + +x533 : Nat +x533 = 533 + +x534 : Nat +x534 = 534 + +x535 : Nat +x535 = 535 + +x536 : Nat +x536 = 536 + +x537 : Nat +x537 = 537 + +x538 : Nat +x538 = 538 + +x539 : Nat +x539 = 539 + +x540 : Nat +x540 = 540 + +x541 : Nat +x541 = 541 + +x542 : Nat +x542 = 542 + +x543 : Nat +x543 = 543 + +x544 : Nat +x544 = 544 + +x545 : Nat +x545 = 545 + +x546 : Nat +x546 = 546 + +x547 : Nat +x547 = 547 + +x548 : Nat +x548 = 548 + +x549 : Nat +x549 = 549 + +x550 : Nat +x550 = 550 + +x551 : Nat +x551 = 551 + +x552 : Nat +x552 = 552 + +x553 : Nat +x553 = 553 + +x554 : Nat +x554 = 554 + +x555 : Nat +x555 = 555 + +x556 : Nat +x556 = 556 + +x557 : Nat +x557 = 557 + +x558 : Nat +x558 = 558 + +x559 : Nat +x559 = 559 + +x560 : Nat +x560 = 560 + +x561 : Nat +x561 = 561 + +x562 : Nat +x562 = 562 + +x563 : Nat +x563 = 563 + +x564 : Nat +x564 = 564 + +x565 : Nat +x565 = 565 + +x566 : Nat +x566 = 566 + +x567 : Nat +x567 = 567 + +x568 : Nat +x568 = 568 + +x569 : Nat +x569 = 569 + +x570 : Nat +x570 = 570 + +x571 : Nat +x571 = 571 + +x572 : Nat +x572 = 572 + +x573 : Nat +x573 = 573 + +x574 : Nat +x574 = 574 + +x575 : Nat +x575 = 575 + +x576 : Nat +x576 = 576 + +x577 : Nat +x577 = 577 + +x578 : Nat +x578 = 578 + +x579 : Nat +x579 = 579 + +x580 : Nat +x580 = 580 + +x581 : Nat +x581 = 581 + +x582 : Nat +x582 = 582 + +x583 : Nat +x583 = 583 + +x584 : Nat +x584 = 584 + +x585 : Nat +x585 = 585 + +x586 : Nat +x586 = 586 + +x587 : Nat +x587 = 587 + +x588 : Nat +x588 = 588 + +x589 : Nat +x589 = 589 + +x590 : Nat +x590 = 590 + +x591 : Nat +x591 = 591 + +x592 : Nat +x592 = 592 + +x593 : Nat +x593 = 593 + +x594 : Nat +x594 = 594 + +x595 : Nat +x595 = 595 + +x596 : Nat +x596 = 596 + +x597 : Nat +x597 = 597 + +x598 : Nat +x598 = 598 + +x599 : Nat +x599 = 599 + +x600 : Nat +x600 = 600 + +x601 : Nat +x601 = 601 + +x602 : Nat +x602 = 602 + +x603 : Nat +x603 = 603 + +x604 : Nat +x604 = 604 + +x605 : Nat +x605 = 605 + +x606 : Nat +x606 = 606 + +x607 : Nat +x607 = 607 + +x608 : Nat +x608 = 608 + +x609 : Nat +x609 = 609 + +x610 : Nat +x610 = 610 + +x611 : Nat +x611 = 611 + +x612 : Nat +x612 = 612 + +x613 : Nat +x613 = 613 + +x614 : Nat +x614 = 614 + +x615 : Nat +x615 = 615 + +x616 : Nat +x616 = 616 + +x617 : Nat +x617 = 617 + +x618 : Nat +x618 = 618 + +x619 : Nat +x619 = 619 + +x620 : Nat +x620 = 620 + +x621 : Nat +x621 = 621 + +x622 : Nat +x622 = 622 + +x623 : Nat +x623 = 623 + +x624 : Nat +x624 = 624 + +x625 : Nat +x625 = 625 + +x626 : Nat +x626 = 626 + +x627 : Nat +x627 = 627 + +x628 : Nat +x628 = 628 + +x629 : Nat +x629 = 629 + +x630 : Nat +x630 = 630 + +x631 : Nat +x631 = 631 + +x632 : Nat +x632 = 632 + +x633 : Nat +x633 = 633 + +x634 : Nat +x634 = 634 + +x635 : Nat +x635 = 635 + +x636 : Nat +x636 = 636 + +x637 : Nat +x637 = 637 + +x638 : Nat +x638 = 638 + +x639 : Nat +x639 = 639 + +x640 : Nat +x640 = 640 + +x641 : Nat +x641 = 641 + +x642 : Nat +x642 = 642 + +x643 : Nat +x643 = 643 + +x644 : Nat +x644 = 644 + +x645 : Nat +x645 = 645 + +x646 : Nat +x646 = 646 + +x647 : Nat +x647 = 647 + +x648 : Nat +x648 = 648 + +x649 : Nat +x649 = 649 + +x650 : Nat +x650 = 650 + +x651 : Nat +x651 = 651 + +x652 : Nat +x652 = 652 + +x653 : Nat +x653 = 653 + +x654 : Nat +x654 = 654 + +x655 : Nat +x655 = 655 + +x656 : Nat +x656 = 656 + +x657 : Nat +x657 = 657 + +x658 : Nat +x658 = 658 + +x659 : Nat +x659 = 659 + +x660 : Nat +x660 = 660 + +x661 : Nat +x661 = 661 + +x662 : Nat +x662 = 662 + +x663 : Nat +x663 = 663 + +x664 : Nat +x664 = 664 + +x665 : Nat +x665 = 665 + +x666 : Nat +x666 = 666 + +x667 : Nat +x667 = 667 + +x668 : Nat +x668 = 668 + +x669 : Nat +x669 = 669 + +x670 : Nat +x670 = 670 + +x671 : Nat +x671 = 671 + +x672 : Nat +x672 = 672 + +x673 : Nat +x673 = 673 + +x674 : Nat +x674 = 674 + +x675 : Nat +x675 = 675 + +x676 : Nat +x676 = 676 + +x677 : Nat +x677 = 677 + +x678 : Nat +x678 = 678 + +x679 : Nat +x679 = 679 + +x680 : Nat +x680 = 680 + +x681 : Nat +x681 = 681 + +x682 : Nat +x682 = 682 + +x683 : Nat +x683 = 683 + +x684 : Nat +x684 = 684 + +x685 : Nat +x685 = 685 + +x686 : Nat +x686 = 686 + +x687 : Nat +x687 = 687 + +x688 : Nat +x688 = 688 + +x689 : Nat +x689 = 689 + +x690 : Nat +x690 = 690 + +x691 : Nat +x691 = 691 + +x692 : Nat +x692 = 692 + +x693 : Nat +x693 = 693 + +x694 : Nat +x694 = 694 + +x695 : Nat +x695 = 695 + +x696 : Nat +x696 = 696 + +x697 : Nat +x697 = 697 + +x698 : Nat +x698 = 698 + +x699 : Nat +x699 = 699 + +x700 : Nat +x700 = 700 + +x701 : Nat +x701 = 701 + +x702 : Nat +x702 = 702 + +x703 : Nat +x703 = 703 + +x704 : Nat +x704 = 704 + +x705 : Nat +x705 = 705 + +x706 : Nat +x706 = 706 + +x707 : Nat +x707 = 707 + +x708 : Nat +x708 = 708 + +x709 : Nat +x709 = 709 + +x710 : Nat +x710 = 710 + +x711 : Nat +x711 = 711 + +x712 : Nat +x712 = 712 + +x713 : Nat +x713 = 713 + +x714 : Nat +x714 = 714 + +x715 : Nat +x715 = 715 + +x716 : Nat +x716 = 716 + +x717 : Nat +x717 = 717 + +x718 : Nat +x718 = 718 + +x719 : Nat +x719 = 719 + +x720 : Nat +x720 = 720 + +x721 : Nat +x721 = 721 + +x722 : Nat +x722 = 722 + +x723 : Nat +x723 = 723 + +x724 : Nat +x724 = 724 + +x725 : Nat +x725 = 725 + +x726 : Nat +x726 = 726 + +x727 : Nat +x727 = 727 + +x728 : Nat +x728 = 728 + +x729 : Nat +x729 = 729 + +x730 : Nat +x730 = 730 + +x731 : Nat +x731 = 731 + +x732 : Nat +x732 = 732 + +x733 : Nat +x733 = 733 + +x734 : Nat +x734 = 734 + +x735 : Nat +x735 = 735 + +x736 : Nat +x736 = 736 + +x737 : Nat +x737 = 737 + +x738 : Nat +x738 = 738 + +x739 : Nat +x739 = 739 + +x740 : Nat +x740 = 740 + +x741 : Nat +x741 = 741 + +x742 : Nat +x742 = 742 + +x743 : Nat +x743 = 743 + +x744 : Nat +x744 = 744 + +x745 : Nat +x745 = 745 + +x746 : Nat +x746 = 746 + +x747 : Nat +x747 = 747 + +x748 : Nat +x748 = 748 + +x749 : Nat +x749 = 749 + +x750 : Nat +x750 = 750 + +x751 : Nat +x751 = 751 + +x752 : Nat +x752 = 752 + +x753 : Nat +x753 = 753 + +x754 : Nat +x754 = 754 + +x755 : Nat +x755 = 755 + +x756 : Nat +x756 = 756 + +x757 : Nat +x757 = 757 + +x758 : Nat +x758 = 758 + +x759 : Nat +x759 = 759 + +x760 : Nat +x760 = 760 + +x761 : Nat +x761 = 761 + +x762 : Nat +x762 = 762 + +x763 : Nat +x763 = 763 + +x764 : Nat +x764 = 764 + +x765 : Nat +x765 = 765 + +x766 : Nat +x766 = 766 + +x767 : Nat +x767 = 767 + +x768 : Nat +x768 = 768 + +x769 : Nat +x769 = 769 + +x770 : Nat +x770 = 770 + +x771 : Nat +x771 = 771 + +x772 : Nat +x772 = 772 + +x773 : Nat +x773 = 773 + +x774 : Nat +x774 = 774 + +x775 : Nat +x775 = 775 + +x776 : Nat +x776 = 776 + +x777 : Nat +x777 = 777 + +x778 : Nat +x778 = 778 + +x779 : Nat +x779 = 779 + +x780 : Nat +x780 = 780 + +x781 : Nat +x781 = 781 + +x782 : Nat +x782 = 782 + +x783 : Nat +x783 = 783 + +x784 : Nat +x784 = 784 + +x785 : Nat +x785 = 785 + +x786 : Nat +x786 = 786 + +x787 : Nat +x787 = 787 + +x788 : Nat +x788 = 788 + +x789 : Nat +x789 = 789 + +x790 : Nat +x790 = 790 + +x791 : Nat +x791 = 791 + +x792 : Nat +x792 = 792 + +x793 : Nat +x793 = 793 + +x794 : Nat +x794 = 794 + +x795 : Nat +x795 = 795 + +x796 : Nat +x796 = 796 + +x797 : Nat +x797 = 797 + +x798 : Nat +x798 = 798 + +x799 : Nat +x799 = 799 + +x800 : Nat +x800 = 800 + +x801 : Nat +x801 = 801 + +x802 : Nat +x802 = 802 + +x803 : Nat +x803 = 803 + +x804 : Nat +x804 = 804 + +x805 : Nat +x805 = 805 + +x806 : Nat +x806 = 806 + +x807 : Nat +x807 = 807 + +x808 : Nat +x808 = 808 + +x809 : Nat +x809 = 809 + +x810 : Nat +x810 = 810 + +x811 : Nat +x811 = 811 + +x812 : Nat +x812 = 812 + +x813 : Nat +x813 = 813 + +x814 : Nat +x814 = 814 + +x815 : Nat +x815 = 815 + +x816 : Nat +x816 = 816 + +x817 : Nat +x817 = 817 + +x818 : Nat +x818 = 818 + +x819 : Nat +x819 = 819 + +x820 : Nat +x820 = 820 + +x821 : Nat +x821 = 821 + +x822 : Nat +x822 = 822 + +x823 : Nat +x823 = 823 + +x824 : Nat +x824 = 824 + +x825 : Nat +x825 = 825 + +x826 : Nat +x826 = 826 + +x827 : Nat +x827 = 827 + +x828 : Nat +x828 = 828 + +x829 : Nat +x829 = 829 + +x830 : Nat +x830 = 830 + +x831 : Nat +x831 = 831 + +x832 : Nat +x832 = 832 + +x833 : Nat +x833 = 833 + +x834 : Nat +x834 = 834 + +x835 : Nat +x835 = 835 + +x836 : Nat +x836 = 836 + +x837 : Nat +x837 = 837 + +x838 : Nat +x838 = 838 + +x839 : Nat +x839 = 839 + +x840 : Nat +x840 = 840 + +x841 : Nat +x841 = 841 + +x842 : Nat +x842 = 842 + +x843 : Nat +x843 = 843 + +x844 : Nat +x844 = 844 + +x845 : Nat +x845 = 845 + +x846 : Nat +x846 = 846 + +x847 : Nat +x847 = 847 + +x848 : Nat +x848 = 848 + +x849 : Nat +x849 = 849 + +x850 : Nat +x850 = 850 + +x851 : Nat +x851 = 851 + +x852 : Nat +x852 = 852 + +x853 : Nat +x853 = 853 + +x854 : Nat +x854 = 854 + +x855 : Nat +x855 = 855 + +x856 : Nat +x856 = 856 + +x857 : Nat +x857 = 857 + +x858 : Nat +x858 = 858 + +x859 : Nat +x859 = 859 + +x860 : Nat +x860 = 860 + +x861 : Nat +x861 = 861 + +x862 : Nat +x862 = 862 + +x863 : Nat +x863 = 863 + +x864 : Nat +x864 = 864 + +x865 : Nat +x865 = 865 + +x866 : Nat +x866 = 866 + +x867 : Nat +x867 = 867 + +x868 : Nat +x868 = 868 + +x869 : Nat +x869 = 869 + +x870 : Nat +x870 = 870 + +x871 : Nat +x871 = 871 + +x872 : Nat +x872 = 872 + +x873 : Nat +x873 = 873 + +x874 : Nat +x874 = 874 + +x875 : Nat +x875 = 875 + +x876 : Nat +x876 = 876 + +x877 : Nat +x877 = 877 + +x878 : Nat +x878 = 878 + +x879 : Nat +x879 = 879 + +x880 : Nat +x880 = 880 + +x881 : Nat +x881 = 881 + +x882 : Nat +x882 = 882 + +x883 : Nat +x883 = 883 + +x884 : Nat +x884 = 884 + +x885 : Nat +x885 = 885 + +x886 : Nat +x886 = 886 + +x887 : Nat +x887 = 887 + +x888 : Nat +x888 = 888 + +x889 : Nat +x889 = 889 + +x890 : Nat +x890 = 890 + +x891 : Nat +x891 = 891 + +x892 : Nat +x892 = 892 + +x893 : Nat +x893 = 893 + +x894 : Nat +x894 = 894 + +x895 : Nat +x895 = 895 + +x896 : Nat +x896 = 896 + +x897 : Nat +x897 = 897 + +x898 : Nat +x898 = 898 + +x899 : Nat +x899 = 899 + +x900 : Nat +x900 = 900 + +x901 : Nat +x901 = 901 + +x902 : Nat +x902 = 902 + +x903 : Nat +x903 = 903 + +x904 : Nat +x904 = 904 + +x905 : Nat +x905 = 905 + +x906 : Nat +x906 = 906 + +x907 : Nat +x907 = 907 + +x908 : Nat +x908 = 908 + +x909 : Nat +x909 = 909 + +x910 : Nat +x910 = 910 + +x911 : Nat +x911 = 911 + +x912 : Nat +x912 = 912 + +x913 : Nat +x913 = 913 + +x914 : Nat +x914 = 914 + +x915 : Nat +x915 = 915 + +x916 : Nat +x916 = 916 + +x917 : Nat +x917 = 917 + +x918 : Nat +x918 = 918 + +x919 : Nat +x919 = 919 + +x920 : Nat +x920 = 920 + +x921 : Nat +x921 = 921 + +x922 : Nat +x922 = 922 + +x923 : Nat +x923 = 923 + +x924 : Nat +x924 = 924 + +x925 : Nat +x925 = 925 + +x926 : Nat +x926 = 926 + +x927 : Nat +x927 = 927 + +x928 : Nat +x928 = 928 + +x929 : Nat +x929 = 929 + +x930 : Nat +x930 = 930 + +x931 : Nat +x931 = 931 + +x932 : Nat +x932 = 932 + +x933 : Nat +x933 = 933 + +x934 : Nat +x934 = 934 + +x935 : Nat +x935 = 935 + +x936 : Nat +x936 = 936 + +x937 : Nat +x937 = 937 + +x938 : Nat +x938 = 938 + +x939 : Nat +x939 = 939 + +x940 : Nat +x940 = 940 + +x941 : Nat +x941 = 941 + +x942 : Nat +x942 = 942 + +x943 : Nat +x943 = 943 + +x944 : Nat +x944 = 944 + +x945 : Nat +x945 = 945 + +x946 : Nat +x946 = 946 + +x947 : Nat +x947 = 947 + +x948 : Nat +x948 = 948 + +x949 : Nat +x949 = 949 + +x950 : Nat +x950 = 950 + +x951 : Nat +x951 = 951 + +x952 : Nat +x952 = 952 + +x953 : Nat +x953 = 953 + +x954 : Nat +x954 = 954 + +x955 : Nat +x955 = 955 + +x956 : Nat +x956 = 956 + +x957 : Nat +x957 = 957 + +x958 : Nat +x958 = 958 + +x959 : Nat +x959 = 959 + +x960 : Nat +x960 = 960 + +x961 : Nat +x961 = 961 + +x962 : Nat +x962 = 962 + +x963 : Nat +x963 = 963 + +x964 : Nat +x964 = 964 + +x965 : Nat +x965 = 965 + +x966 : Nat +x966 = 966 + +x967 : Nat +x967 = 967 + +x968 : Nat +x968 = 968 + +x969 : Nat +x969 = 969 + +x970 : Nat +x970 = 970 + +x971 : Nat +x971 = 971 + +x972 : Nat +x972 = 972 + +x973 : Nat +x973 = 973 + +x974 : Nat +x974 = 974 + +x975 : Nat +x975 = 975 + +x976 : Nat +x976 = 976 + +x977 : Nat +x977 = 977 + +x978 : Nat +x978 = 978 + +x979 : Nat +x979 = 979 + +x980 : Nat +x980 = 980 + +x981 : Nat +x981 = 981 + +x982 : Nat +x982 = 982 + +x983 : Nat +x983 = 983 + +x984 : Nat +x984 = 984 + +x985 : Nat +x985 = 985 + +x986 : Nat +x986 = 986 + +x987 : Nat +x987 = 987 + +x988 : Nat +x988 = 988 + +x989 : Nat +x989 = 989 + +x990 : Nat +x990 = 990 + +x991 : Nat +x991 = 991 + +x992 : Nat +x992 = 992 + +x993 : Nat +x993 = 993 + +x994 : Nat +x994 = 994 + +x995 : Nat +x995 = 995 + +x996 : Nat +x996 = 996 + +x997 : Nat +x997 = 997 + +x998 : Nat +x998 = 998 + +x999 : Nat +x999 = 999 + +x1000 : Nat +x1000 = 1000 + +x1001 : Nat +x1001 = 1001 + +x1002 : Nat +x1002 = 1002 + +x1003 : Nat +x1003 = 1003 + +x1004 : Nat +x1004 = 1004 + +x1005 : Nat +x1005 = 1005 + +x1006 : Nat +x1006 = 1006 + +x1007 : Nat +x1007 = 1007 + +x1008 : Nat +x1008 = 1008 + +x1009 : Nat +x1009 = 1009 + +x1010 : Nat +x1010 = 1010 + +x1011 : Nat +x1011 = 1011 + +x1012 : Nat +x1012 = 1012 + +x1013 : Nat +x1013 = 1013 + +x1014 : Nat +x1014 = 1014 + +x1015 : Nat +x1015 = 1015 + +x1016 : Nat +x1016 = 1016 + +x1017 : Nat +x1017 = 1017 + +x1018 : Nat +x1018 = 1018 + +x1019 : Nat +x1019 = 1019 + +x1020 : Nat +x1020 = 1020 + +x1021 : Nat +x1021 = 1021 + +x1022 : Nat +x1022 = 1022 + +x1023 : Nat +x1023 = 1023 + +x1024 : Nat +x1024 = 1024 + +x1025 : Nat +x1025 = 1025 + +x1026 : Nat +x1026 = 1026 + +x1027 : Nat +x1027 = 1027 + +x1028 : Nat +x1028 = 1028 + +x1029 : Nat +x1029 = 1029 + +x1030 : Nat +x1030 = 1030 + +x1031 : Nat +x1031 = 1031 + +x1032 : Nat +x1032 = 1032 + +x1033 : Nat +x1033 = 1033 + +x1034 : Nat +x1034 = 1034 + +x1035 : Nat +x1035 = 1035 + +x1036 : Nat +x1036 = 1036 + +x1037 : Nat +x1037 = 1037 + +x1038 : Nat +x1038 = 1038 + +x1039 : Nat +x1039 = 1039 + +x1040 : Nat +x1040 = 1040 + +x1041 : Nat +x1041 = 1041 + +x1042 : Nat +x1042 = 1042 + +x1043 : Nat +x1043 = 1043 + +x1044 : Nat +x1044 = 1044 + +x1045 : Nat +x1045 = 1045 + +x1046 : Nat +x1046 = 1046 + +x1047 : Nat +x1047 = 1047 + +x1048 : Nat +x1048 = 1048 + +x1049 : Nat +x1049 = 1049 + +x1050 : Nat +x1050 = 1050 + +x1051 : Nat +x1051 = 1051 + +x1052 : Nat +x1052 = 1052 + +x1053 : Nat +x1053 = 1053 + +x1054 : Nat +x1054 = 1054 + +x1055 : Nat +x1055 = 1055 + +x1056 : Nat +x1056 = 1056 + +x1057 : Nat +x1057 = 1057 + +x1058 : Nat +x1058 = 1058 + +x1059 : Nat +x1059 = 1059 + +x1060 : Nat +x1060 = 1060 + +x1061 : Nat +x1061 = 1061 + +x1062 : Nat +x1062 = 1062 + +x1063 : Nat +x1063 = 1063 + +x1064 : Nat +x1064 = 1064 + +x1065 : Nat +x1065 = 1065 + +x1066 : Nat +x1066 = 1066 + +x1067 : Nat +x1067 = 1067 + +x1068 : Nat +x1068 = 1068 + +x1069 : Nat +x1069 = 1069 + +x1070 : Nat +x1070 = 1070 + +x1071 : Nat +x1071 = 1071 + +x1072 : Nat +x1072 = 1072 + +x1073 : Nat +x1073 = 1073 + +x1074 : Nat +x1074 = 1074 + +x1075 : Nat +x1075 = 1075 + +x1076 : Nat +x1076 = 1076 + +x1077 : Nat +x1077 = 1077 + +x1078 : Nat +x1078 = 1078 + +x1079 : Nat +x1079 = 1079 + +x1080 : Nat +x1080 = 1080 + +x1081 : Nat +x1081 = 1081 + +x1082 : Nat +x1082 = 1082 + +x1083 : Nat +x1083 = 1083 + +x1084 : Nat +x1084 = 1084 + +x1085 : Nat +x1085 = 1085 + +x1086 : Nat +x1086 = 1086 + +x1087 : Nat +x1087 = 1087 + +x1088 : Nat +x1088 = 1088 + +x1089 : Nat +x1089 = 1089 + +x1090 : Nat +x1090 = 1090 + +x1091 : Nat +x1091 = 1091 + +x1092 : Nat +x1092 = 1092 + +x1093 : Nat +x1093 = 1093 + +x1094 : Nat +x1094 = 1094 + +x1095 : Nat +x1095 = 1095 + +x1096 : Nat +x1096 = 1096 + +x1097 : Nat +x1097 = 1097 + +x1098 : Nat +x1098 = 1098 + +x1099 : Nat +x1099 = 1099 + +x1100 : Nat +x1100 = 1100 + +x1101 : Nat +x1101 = 1101 + +x1102 : Nat +x1102 = 1102 + +x1103 : Nat +x1103 = 1103 + +x1104 : Nat +x1104 = 1104 + +x1105 : Nat +x1105 = 1105 + +x1106 : Nat +x1106 = 1106 + +x1107 : Nat +x1107 = 1107 + +x1108 : Nat +x1108 = 1108 + +x1109 : Nat +x1109 = 1109 + +x1110 : Nat +x1110 = 1110 + +x1111 : Nat +x1111 = 1111 + +x1112 : Nat +x1112 = 1112 + +x1113 : Nat +x1113 = 1113 + +x1114 : Nat +x1114 = 1114 + +x1115 : Nat +x1115 = 1115 + +x1116 : Nat +x1116 = 1116 + +x1117 : Nat +x1117 = 1117 + +x1118 : Nat +x1118 = 1118 + +x1119 : Nat +x1119 = 1119 + +x1120 : Nat +x1120 = 1120 + +x1121 : Nat +x1121 = 1121 + +x1122 : Nat +x1122 = 1122 + +x1123 : Nat +x1123 = 1123 + +x1124 : Nat +x1124 = 1124 + +x1125 : Nat +x1125 = 1125 + +x1126 : Nat +x1126 = 1126 + +x1127 : Nat +x1127 = 1127 + +x1128 : Nat +x1128 = 1128 + +x1129 : Nat +x1129 = 1129 + +x1130 : Nat +x1130 = 1130 + +x1131 : Nat +x1131 = 1131 + +x1132 : Nat +x1132 = 1132 + +x1133 : Nat +x1133 = 1133 + +x1134 : Nat +x1134 = 1134 + +x1135 : Nat +x1135 = 1135 + +x1136 : Nat +x1136 = 1136 + +x1137 : Nat +x1137 = 1137 + +x1138 : Nat +x1138 = 1138 + +x1139 : Nat +x1139 = 1139 + +x1140 : Nat +x1140 = 1140 + +x1141 : Nat +x1141 = 1141 + +x1142 : Nat +x1142 = 1142 + +x1143 : Nat +x1143 = 1143 + +x1144 : Nat +x1144 = 1144 + +x1145 : Nat +x1145 = 1145 + +x1146 : Nat +x1146 = 1146 + +x1147 : Nat +x1147 = 1147 + +x1148 : Nat +x1148 = 1148 + +x1149 : Nat +x1149 = 1149 + +x1150 : Nat +x1150 = 1150 + +x1151 : Nat +x1151 = 1151 + +x1152 : Nat +x1152 = 1152 + +x1153 : Nat +x1153 = 1153 + +x1154 : Nat +x1154 = 1154 + +x1155 : Nat +x1155 = 1155 + +x1156 : Nat +x1156 = 1156 + +x1157 : Nat +x1157 = 1157 + +x1158 : Nat +x1158 = 1158 + +x1159 : Nat +x1159 = 1159 + +x1160 : Nat +x1160 = 1160 + +x1161 : Nat +x1161 = 1161 + +x1162 : Nat +x1162 = 1162 + +x1163 : Nat +x1163 = 1163 + +x1164 : Nat +x1164 = 1164 + +x1165 : Nat +x1165 = 1165 + +x1166 : Nat +x1166 = 1166 + +x1167 : Nat +x1167 = 1167 + +x1168 : Nat +x1168 = 1168 + +x1169 : Nat +x1169 = 1169 + +x1170 : Nat +x1170 = 1170 + +x1171 : Nat +x1171 = 1171 + +x1172 : Nat +x1172 = 1172 + +x1173 : Nat +x1173 = 1173 + +x1174 : Nat +x1174 = 1174 + +x1175 : Nat +x1175 = 1175 + +x1176 : Nat +x1176 = 1176 + +x1177 : Nat +x1177 = 1177 + +x1178 : Nat +x1178 = 1178 + +x1179 : Nat +x1179 = 1179 + +x1180 : Nat +x1180 = 1180 + +x1181 : Nat +x1181 = 1181 + +x1182 : Nat +x1182 = 1182 + +x1183 : Nat +x1183 = 1183 + +x1184 : Nat +x1184 = 1184 + +x1185 : Nat +x1185 = 1185 + +x1186 : Nat +x1186 = 1186 + +x1187 : Nat +x1187 = 1187 + +x1188 : Nat +x1188 = 1188 + +x1189 : Nat +x1189 = 1189 + +x1190 : Nat +x1190 = 1190 + +x1191 : Nat +x1191 = 1191 + +x1192 : Nat +x1192 = 1192 + +x1193 : Nat +x1193 = 1193 + +x1194 : Nat +x1194 = 1194 + +x1195 : Nat +x1195 = 1195 + +x1196 : Nat +x1196 = 1196 + +x1197 : Nat +x1197 = 1197 + +x1198 : Nat +x1198 = 1198 + +x1199 : Nat +x1199 = 1199 + +x1200 : Nat +x1200 = 1200 + +x1201 : Nat +x1201 = 1201 + +x1202 : Nat +x1202 = 1202 + +x1203 : Nat +x1203 = 1203 + +x1204 : Nat +x1204 = 1204 + +x1205 : Nat +x1205 = 1205 + +x1206 : Nat +x1206 = 1206 + +x1207 : Nat +x1207 = 1207 + +x1208 : Nat +x1208 = 1208 + +x1209 : Nat +x1209 = 1209 + +x1210 : Nat +x1210 = 1210 + +x1211 : Nat +x1211 = 1211 + +x1212 : Nat +x1212 = 1212 + +x1213 : Nat +x1213 = 1213 + +x1214 : Nat +x1214 = 1214 + +x1215 : Nat +x1215 = 1215 + +x1216 : Nat +x1216 = 1216 + +x1217 : Nat +x1217 = 1217 + +x1218 : Nat +x1218 = 1218 + +x1219 : Nat +x1219 = 1219 + +x1220 : Nat +x1220 = 1220 + +x1221 : Nat +x1221 = 1221 + +x1222 : Nat +x1222 = 1222 + +x1223 : Nat +x1223 = 1223 + +x1224 : Nat +x1224 = 1224 + +x1225 : Nat +x1225 = 1225 + +x1226 : Nat +x1226 = 1226 + +x1227 : Nat +x1227 = 1227 + +x1228 : Nat +x1228 = 1228 + +x1229 : Nat +x1229 = 1229 + +x1230 : Nat +x1230 = 1230 + +x1231 : Nat +x1231 = 1231 + +x1232 : Nat +x1232 = 1232 + +x1233 : Nat +x1233 = 1233 + +x1234 : Nat +x1234 = 1234 + +x1235 : Nat +x1235 = 1235 + +x1236 : Nat +x1236 = 1236 + +x1237 : Nat +x1237 = 1237 + +x1238 : Nat +x1238 = 1238 + +x1239 : Nat +x1239 = 1239 + +x1240 : Nat +x1240 = 1240 + +x1241 : Nat +x1241 = 1241 + +x1242 : Nat +x1242 = 1242 + +x1243 : Nat +x1243 = 1243 + +x1244 : Nat +x1244 = 1244 + +x1245 : Nat +x1245 = 1245 + +x1246 : Nat +x1246 = 1246 + +x1247 : Nat +x1247 = 1247 + +x1248 : Nat +x1248 = 1248 + +x1249 : Nat +x1249 = 1249 + +x1250 : Nat +x1250 = 1250 + +x1251 : Nat +x1251 = 1251 + +x1252 : Nat +x1252 = 1252 + +x1253 : Nat +x1253 = 1253 + +x1254 : Nat +x1254 = 1254 + +x1255 : Nat +x1255 = 1255 + +x1256 : Nat +x1256 = 1256 + +x1257 : Nat +x1257 = 1257 + +x1258 : Nat +x1258 = 1258 + +x1259 : Nat +x1259 = 1259 + +x1260 : Nat +x1260 = 1260 + +x1261 : Nat +x1261 = 1261 + +x1262 : Nat +x1262 = 1262 + +x1263 : Nat +x1263 = 1263 + +x1264 : Nat +x1264 = 1264 + +x1265 : Nat +x1265 = 1265 + +x1266 : Nat +x1266 = 1266 + +x1267 : Nat +x1267 = 1267 + +x1268 : Nat +x1268 = 1268 + +x1269 : Nat +x1269 = 1269 + +x1270 : Nat +x1270 = 1270 + +x1271 : Nat +x1271 = 1271 + +x1272 : Nat +x1272 = 1272 + +x1273 : Nat +x1273 = 1273 + +x1274 : Nat +x1274 = 1274 + +x1275 : Nat +x1275 = 1275 + +x1276 : Nat +x1276 = 1276 + +x1277 : Nat +x1277 = 1277 + +x1278 : Nat +x1278 = 1278 + +x1279 : Nat +x1279 = 1279 + +x1280 : Nat +x1280 = 1280 + +x1281 : Nat +x1281 = 1281 + +x1282 : Nat +x1282 = 1282 + +x1283 : Nat +x1283 = 1283 + +x1284 : Nat +x1284 = 1284 + +x1285 : Nat +x1285 = 1285 + +x1286 : Nat +x1286 = 1286 + +x1287 : Nat +x1287 = 1287 + +x1288 : Nat +x1288 = 1288 + +x1289 : Nat +x1289 = 1289 + +x1290 : Nat +x1290 = 1290 + +x1291 : Nat +x1291 = 1291 + +x1292 : Nat +x1292 = 1292 + +x1293 : Nat +x1293 = 1293 + +x1294 : Nat +x1294 = 1294 + +x1295 : Nat +x1295 = 1295 + +x1296 : Nat +x1296 = 1296 + +x1297 : Nat +x1297 = 1297 + +x1298 : Nat +x1298 = 1298 + +x1299 : Nat +x1299 = 1299 + +x1300 : Nat +x1300 = 1300 + +x1301 : Nat +x1301 = 1301 + +x1302 : Nat +x1302 = 1302 + +x1303 : Nat +x1303 = 1303 + +x1304 : Nat +x1304 = 1304 + +x1305 : Nat +x1305 = 1305 + +x1306 : Nat +x1306 = 1306 + +x1307 : Nat +x1307 = 1307 + +x1308 : Nat +x1308 = 1308 + +x1309 : Nat +x1309 = 1309 + +x1310 : Nat +x1310 = 1310 + +x1311 : Nat +x1311 = 1311 + +x1312 : Nat +x1312 = 1312 + +x1313 : Nat +x1313 = 1313 + +x1314 : Nat +x1314 = 1314 + +x1315 : Nat +x1315 = 1315 + +x1316 : Nat +x1316 = 1316 + +x1317 : Nat +x1317 = 1317 + +x1318 : Nat +x1318 = 1318 + +x1319 : Nat +x1319 = 1319 + +x1320 : Nat +x1320 = 1320 + +x1321 : Nat +x1321 = 1321 + +x1322 : Nat +x1322 = 1322 + +x1323 : Nat +x1323 = 1323 + +x1324 : Nat +x1324 = 1324 + +x1325 : Nat +x1325 = 1325 + +x1326 : Nat +x1326 = 1326 + +x1327 : Nat +x1327 = 1327 + +x1328 : Nat +x1328 = 1328 + +x1329 : Nat +x1329 = 1329 + +x1330 : Nat +x1330 = 1330 + +x1331 : Nat +x1331 = 1331 + +x1332 : Nat +x1332 = 1332 + +x1333 : Nat +x1333 = 1333 + +x1334 : Nat +x1334 = 1334 + +x1335 : Nat +x1335 = 1335 + +x1336 : Nat +x1336 = 1336 + +x1337 : Nat +x1337 = 1337 + +x1338 : Nat +x1338 = 1338 + +x1339 : Nat +x1339 = 1339 + +x1340 : Nat +x1340 = 1340 + +x1341 : Nat +x1341 = 1341 + +x1342 : Nat +x1342 = 1342 + +x1343 : Nat +x1343 = 1343 + +x1344 : Nat +x1344 = 1344 + +x1345 : Nat +x1345 = 1345 + +x1346 : Nat +x1346 = 1346 + +x1347 : Nat +x1347 = 1347 + +x1348 : Nat +x1348 = 1348 + +x1349 : Nat +x1349 = 1349 + +x1350 : Nat +x1350 = 1350 + +x1351 : Nat +x1351 = 1351 + +x1352 : Nat +x1352 = 1352 + +x1353 : Nat +x1353 = 1353 + +x1354 : Nat +x1354 = 1354 + +x1355 : Nat +x1355 = 1355 + +x1356 : Nat +x1356 = 1356 + +x1357 : Nat +x1357 = 1357 + +x1358 : Nat +x1358 = 1358 + +x1359 : Nat +x1359 = 1359 + +x1360 : Nat +x1360 = 1360 + +x1361 : Nat +x1361 = 1361 + +x1362 : Nat +x1362 = 1362 + +x1363 : Nat +x1363 = 1363 + +x1364 : Nat +x1364 = 1364 + +x1365 : Nat +x1365 = 1365 + +x1366 : Nat +x1366 = 1366 + +x1367 : Nat +x1367 = 1367 + +x1368 : Nat +x1368 = 1368 + +x1369 : Nat +x1369 = 1369 + +x1370 : Nat +x1370 = 1370 + +x1371 : Nat +x1371 = 1371 + +x1372 : Nat +x1372 = 1372 + +x1373 : Nat +x1373 = 1373 + +x1374 : Nat +x1374 = 1374 + +x1375 : Nat +x1375 = 1375 + +x1376 : Nat +x1376 = 1376 + +x1377 : Nat +x1377 = 1377 + +x1378 : Nat +x1378 = 1378 + +x1379 : Nat +x1379 = 1379 + +x1380 : Nat +x1380 = 1380 + +x1381 : Nat +x1381 = 1381 + +x1382 : Nat +x1382 = 1382 + +x1383 : Nat +x1383 = 1383 + +x1384 : Nat +x1384 = 1384 + +x1385 : Nat +x1385 = 1385 + +x1386 : Nat +x1386 = 1386 + +x1387 : Nat +x1387 = 1387 + +x1388 : Nat +x1388 = 1388 + +x1389 : Nat +x1389 = 1389 + +x1390 : Nat +x1390 = 1390 + +x1391 : Nat +x1391 = 1391 + +x1392 : Nat +x1392 = 1392 + +x1393 : Nat +x1393 = 1393 + +x1394 : Nat +x1394 = 1394 + +x1395 : Nat +x1395 = 1395 + +x1396 : Nat +x1396 = 1396 + +x1397 : Nat +x1397 = 1397 + +x1398 : Nat +x1398 = 1398 + +x1399 : Nat +x1399 = 1399 + +x1400 : Nat +x1400 = 1400 + +x1401 : Nat +x1401 = 1401 + +x1402 : Nat +x1402 = 1402 + +x1403 : Nat +x1403 = 1403 + +x1404 : Nat +x1404 = 1404 + +x1405 : Nat +x1405 = 1405 + +x1406 : Nat +x1406 = 1406 + +x1407 : Nat +x1407 = 1407 + +x1408 : Nat +x1408 = 1408 + +x1409 : Nat +x1409 = 1409 + +x1410 : Nat +x1410 = 1410 + +x1411 : Nat +x1411 = 1411 + +x1412 : Nat +x1412 = 1412 + +x1413 : Nat +x1413 = 1413 + +x1414 : Nat +x1414 = 1414 + +x1415 : Nat +x1415 = 1415 + +x1416 : Nat +x1416 = 1416 + +x1417 : Nat +x1417 = 1417 + +x1418 : Nat +x1418 = 1418 + +x1419 : Nat +x1419 = 1419 + +x1420 : Nat +x1420 = 1420 + +x1421 : Nat +x1421 = 1421 + +x1422 : Nat +x1422 = 1422 + +x1423 : Nat +x1423 = 1423 + +x1424 : Nat +x1424 = 1424 + +x1425 : Nat +x1425 = 1425 + +x1426 : Nat +x1426 = 1426 + +x1427 : Nat +x1427 = 1427 + +x1428 : Nat +x1428 = 1428 + +x1429 : Nat +x1429 = 1429 + +x1430 : Nat +x1430 = 1430 + +x1431 : Nat +x1431 = 1431 + +x1432 : Nat +x1432 = 1432 + +x1433 : Nat +x1433 = 1433 + +x1434 : Nat +x1434 = 1434 + +x1435 : Nat +x1435 = 1435 + +x1436 : Nat +x1436 = 1436 + +x1437 : Nat +x1437 = 1437 + +x1438 : Nat +x1438 = 1438 + +x1439 : Nat +x1439 = 1439 + +x1440 : Nat +x1440 = 1440 + +x1441 : Nat +x1441 = 1441 + +x1442 : Nat +x1442 = 1442 + +x1443 : Nat +x1443 = 1443 + +x1444 : Nat +x1444 = 1444 + +x1445 : Nat +x1445 = 1445 + +x1446 : Nat +x1446 = 1446 + +x1447 : Nat +x1447 = 1447 + +x1448 : Nat +x1448 = 1448 + +x1449 : Nat +x1449 = 1449 + +x1450 : Nat +x1450 = 1450 + +x1451 : Nat +x1451 = 1451 + +x1452 : Nat +x1452 = 1452 + +x1453 : Nat +x1453 = 1453 + +x1454 : Nat +x1454 = 1454 + +x1455 : Nat +x1455 = 1455 + +x1456 : Nat +x1456 = 1456 + +x1457 : Nat +x1457 = 1457 + +x1458 : Nat +x1458 = 1458 + +x1459 : Nat +x1459 = 1459 + +x1460 : Nat +x1460 = 1460 + +x1461 : Nat +x1461 = 1461 + +x1462 : Nat +x1462 = 1462 + +x1463 : Nat +x1463 = 1463 + +x1464 : Nat +x1464 = 1464 + +x1465 : Nat +x1465 = 1465 + +x1466 : Nat +x1466 = 1466 + +x1467 : Nat +x1467 = 1467 + +x1468 : Nat +x1468 = 1468 + +x1469 : Nat +x1469 = 1469 + +x1470 : Nat +x1470 = 1470 + +x1471 : Nat +x1471 = 1471 + +x1472 : Nat +x1472 = 1472 + +x1473 : Nat +x1473 = 1473 + +x1474 : Nat +x1474 = 1474 + +x1475 : Nat +x1475 = 1475 + +x1476 : Nat +x1476 = 1476 + +x1477 : Nat +x1477 = 1477 + +x1478 : Nat +x1478 = 1478 + +x1479 : Nat +x1479 = 1479 + +x1480 : Nat +x1480 = 1480 + +x1481 : Nat +x1481 = 1481 + +x1482 : Nat +x1482 = 1482 + +x1483 : Nat +x1483 = 1483 + +x1484 : Nat +x1484 = 1484 + +x1485 : Nat +x1485 = 1485 + +x1486 : Nat +x1486 = 1486 + +x1487 : Nat +x1487 = 1487 + +x1488 : Nat +x1488 = 1488 + +x1489 : Nat +x1489 = 1489 + +x1490 : Nat +x1490 = 1490 + +x1491 : Nat +x1491 = 1491 + +x1492 : Nat +x1492 = 1492 + +x1493 : Nat +x1493 = 1493 + +x1494 : Nat +x1494 = 1494 + +x1495 : Nat +x1495 = 1495 + +x1496 : Nat +x1496 = 1496 + +x1497 : Nat +x1497 = 1497 + +x1498 : Nat +x1498 = 1498 + +x1499 : Nat +x1499 = 1499 + +x1500 : Nat +x1500 = 1500 + +x1501 : Nat +x1501 = 1501 + +x1502 : Nat +x1502 = 1502 + +x1503 : Nat +x1503 = 1503 + +x1504 : Nat +x1504 = 1504 + +x1505 : Nat +x1505 = 1505 + +x1506 : Nat +x1506 = 1506 + +x1507 : Nat +x1507 = 1507 + +x1508 : Nat +x1508 = 1508 + +x1509 : Nat +x1509 = 1509 + +x1510 : Nat +x1510 = 1510 + +x1511 : Nat +x1511 = 1511 + +x1512 : Nat +x1512 = 1512 + +x1513 : Nat +x1513 = 1513 + +x1514 : Nat +x1514 = 1514 + +x1515 : Nat +x1515 = 1515 + +x1516 : Nat +x1516 = 1516 + +x1517 : Nat +x1517 = 1517 + +x1518 : Nat +x1518 = 1518 + +x1519 : Nat +x1519 = 1519 + +x1520 : Nat +x1520 = 1520 + +x1521 : Nat +x1521 = 1521 + +x1522 : Nat +x1522 = 1522 + +x1523 : Nat +x1523 = 1523 + +x1524 : Nat +x1524 = 1524 + +x1525 : Nat +x1525 = 1525 + +x1526 : Nat +x1526 = 1526 + +x1527 : Nat +x1527 = 1527 + +x1528 : Nat +x1528 = 1528 + +x1529 : Nat +x1529 = 1529 + +x1530 : Nat +x1530 = 1530 + +x1531 : Nat +x1531 = 1531 + +x1532 : Nat +x1532 = 1532 + +x1533 : Nat +x1533 = 1533 + +x1534 : Nat +x1534 = 1534 + +x1535 : Nat +x1535 = 1535 + +x1536 : Nat +x1536 = 1536 + +x1537 : Nat +x1537 = 1537 + +x1538 : Nat +x1538 = 1538 + +x1539 : Nat +x1539 = 1539 + +x1540 : Nat +x1540 = 1540 + +x1541 : Nat +x1541 = 1541 + +x1542 : Nat +x1542 = 1542 + +x1543 : Nat +x1543 = 1543 + +x1544 : Nat +x1544 = 1544 + +x1545 : Nat +x1545 = 1545 + +x1546 : Nat +x1546 = 1546 + +x1547 : Nat +x1547 = 1547 + +x1548 : Nat +x1548 = 1548 + +x1549 : Nat +x1549 = 1549 + +x1550 : Nat +x1550 = 1550 + +x1551 : Nat +x1551 = 1551 + +x1552 : Nat +x1552 = 1552 + +x1553 : Nat +x1553 = 1553 + +x1554 : Nat +x1554 = 1554 + +x1555 : Nat +x1555 = 1555 + +x1556 : Nat +x1556 = 1556 + +x1557 : Nat +x1557 = 1557 + +x1558 : Nat +x1558 = 1558 + +x1559 : Nat +x1559 = 1559 + +x1560 : Nat +x1560 = 1560 + +x1561 : Nat +x1561 = 1561 + +x1562 : Nat +x1562 = 1562 + +x1563 : Nat +x1563 = 1563 + +x1564 : Nat +x1564 = 1564 + +x1565 : Nat +x1565 = 1565 + +x1566 : Nat +x1566 = 1566 + +x1567 : Nat +x1567 = 1567 + +x1568 : Nat +x1568 = 1568 + +x1569 : Nat +x1569 = 1569 + +x1570 : Nat +x1570 = 1570 + +x1571 : Nat +x1571 = 1571 + +x1572 : Nat +x1572 = 1572 + +x1573 : Nat +x1573 = 1573 + +x1574 : Nat +x1574 = 1574 + +x1575 : Nat +x1575 = 1575 + +x1576 : Nat +x1576 = 1576 + +x1577 : Nat +x1577 = 1577 + +x1578 : Nat +x1578 = 1578 + +x1579 : Nat +x1579 = 1579 + +x1580 : Nat +x1580 = 1580 + +x1581 : Nat +x1581 = 1581 + +x1582 : Nat +x1582 = 1582 + +x1583 : Nat +x1583 = 1583 + +x1584 : Nat +x1584 = 1584 + +x1585 : Nat +x1585 = 1585 + +x1586 : Nat +x1586 = 1586 + +x1587 : Nat +x1587 = 1587 + +x1588 : Nat +x1588 = 1588 + +x1589 : Nat +x1589 = 1589 + +x1590 : Nat +x1590 = 1590 + +x1591 : Nat +x1591 = 1591 + +x1592 : Nat +x1592 = 1592 + +x1593 : Nat +x1593 = 1593 + +x1594 : Nat +x1594 = 1594 + +x1595 : Nat +x1595 = 1595 + +x1596 : Nat +x1596 = 1596 + +x1597 : Nat +x1597 = 1597 + +x1598 : Nat +x1598 = 1598 + +x1599 : Nat +x1599 = 1599 + +x1600 : Nat +x1600 = 1600 + +x1601 : Nat +x1601 = 1601 + +x1602 : Nat +x1602 = 1602 + +x1603 : Nat +x1603 = 1603 + +x1604 : Nat +x1604 = 1604 + +x1605 : Nat +x1605 = 1605 + +x1606 : Nat +x1606 = 1606 + +x1607 : Nat +x1607 = 1607 + +x1608 : Nat +x1608 = 1608 + +x1609 : Nat +x1609 = 1609 + +x1610 : Nat +x1610 = 1610 + +x1611 : Nat +x1611 = 1611 + +x1612 : Nat +x1612 = 1612 + +x1613 : Nat +x1613 = 1613 + +x1614 : Nat +x1614 = 1614 + +x1615 : Nat +x1615 = 1615 + +x1616 : Nat +x1616 = 1616 + +x1617 : Nat +x1617 = 1617 + +x1618 : Nat +x1618 = 1618 + +x1619 : Nat +x1619 = 1619 + +x1620 : Nat +x1620 = 1620 + +x1621 : Nat +x1621 = 1621 + +x1622 : Nat +x1622 = 1622 + +x1623 : Nat +x1623 = 1623 + +x1624 : Nat +x1624 = 1624 + +x1625 : Nat +x1625 = 1625 + +x1626 : Nat +x1626 = 1626 + +x1627 : Nat +x1627 = 1627 + +x1628 : Nat +x1628 = 1628 + +x1629 : Nat +x1629 = 1629 + +x1630 : Nat +x1630 = 1630 + +x1631 : Nat +x1631 = 1631 + +x1632 : Nat +x1632 = 1632 + +x1633 : Nat +x1633 = 1633 + +x1634 : Nat +x1634 = 1634 + +x1635 : Nat +x1635 = 1635 + +x1636 : Nat +x1636 = 1636 + +x1637 : Nat +x1637 = 1637 + +x1638 : Nat +x1638 = 1638 + +x1639 : Nat +x1639 = 1639 + +x1640 : Nat +x1640 = 1640 + +x1641 : Nat +x1641 = 1641 + +x1642 : Nat +x1642 = 1642 + +x1643 : Nat +x1643 = 1643 + +x1644 : Nat +x1644 = 1644 + +x1645 : Nat +x1645 = 1645 + +x1646 : Nat +x1646 = 1646 + +x1647 : Nat +x1647 = 1647 + +x1648 : Nat +x1648 = 1648 + +x1649 : Nat +x1649 = 1649 + +x1650 : Nat +x1650 = 1650 + +x1651 : Nat +x1651 = 1651 + +x1652 : Nat +x1652 = 1652 + +x1653 : Nat +x1653 = 1653 + +x1654 : Nat +x1654 = 1654 + +x1655 : Nat +x1655 = 1655 + +x1656 : Nat +x1656 = 1656 + +x1657 : Nat +x1657 = 1657 + +x1658 : Nat +x1658 = 1658 + +x1659 : Nat +x1659 = 1659 + +x1660 : Nat +x1660 = 1660 + +x1661 : Nat +x1661 = 1661 + +x1662 : Nat +x1662 = 1662 + +x1663 : Nat +x1663 = 1663 + +x1664 : Nat +x1664 = 1664 + +x1665 : Nat +x1665 = 1665 + +x1666 : Nat +x1666 = 1666 + +x1667 : Nat +x1667 = 1667 + +x1668 : Nat +x1668 = 1668 + +x1669 : Nat +x1669 = 1669 + +x1670 : Nat +x1670 = 1670 + +x1671 : Nat +x1671 = 1671 + +x1672 : Nat +x1672 = 1672 + +x1673 : Nat +x1673 = 1673 + +x1674 : Nat +x1674 = 1674 + +x1675 : Nat +x1675 = 1675 + +x1676 : Nat +x1676 = 1676 + +x1677 : Nat +x1677 = 1677 + +x1678 : Nat +x1678 = 1678 + +x1679 : Nat +x1679 = 1679 + +x1680 : Nat +x1680 = 1680 + +x1681 : Nat +x1681 = 1681 + +x1682 : Nat +x1682 = 1682 + +x1683 : Nat +x1683 = 1683 + +x1684 : Nat +x1684 = 1684 + +x1685 : Nat +x1685 = 1685 + +x1686 : Nat +x1686 = 1686 + +x1687 : Nat +x1687 = 1687 + +x1688 : Nat +x1688 = 1688 + +x1689 : Nat +x1689 = 1689 + +x1690 : Nat +x1690 = 1690 + +x1691 : Nat +x1691 = 1691 + +x1692 : Nat +x1692 = 1692 + +x1693 : Nat +x1693 = 1693 + +x1694 : Nat +x1694 = 1694 + +x1695 : Nat +x1695 = 1695 + +x1696 : Nat +x1696 = 1696 + +x1697 : Nat +x1697 = 1697 + +x1698 : Nat +x1698 = 1698 + +x1699 : Nat +x1699 = 1699 + +x1700 : Nat +x1700 = 1700 + +x1701 : Nat +x1701 = 1701 + +x1702 : Nat +x1702 = 1702 + +x1703 : Nat +x1703 = 1703 + +x1704 : Nat +x1704 = 1704 + +x1705 : Nat +x1705 = 1705 + +x1706 : Nat +x1706 = 1706 + +x1707 : Nat +x1707 = 1707 + +x1708 : Nat +x1708 = 1708 + +x1709 : Nat +x1709 = 1709 + +x1710 : Nat +x1710 = 1710 + +x1711 : Nat +x1711 = 1711 + +x1712 : Nat +x1712 = 1712 + +x1713 : Nat +x1713 = 1713 + +x1714 : Nat +x1714 = 1714 + +x1715 : Nat +x1715 = 1715 + +x1716 : Nat +x1716 = 1716 + +x1717 : Nat +x1717 = 1717 + +x1718 : Nat +x1718 = 1718 + +x1719 : Nat +x1719 = 1719 + +x1720 : Nat +x1720 = 1720 + +x1721 : Nat +x1721 = 1721 + +x1722 : Nat +x1722 = 1722 + +x1723 : Nat +x1723 = 1723 + +x1724 : Nat +x1724 = 1724 + +x1725 : Nat +x1725 = 1725 + +x1726 : Nat +x1726 = 1726 + +x1727 : Nat +x1727 = 1727 + +x1728 : Nat +x1728 = 1728 + +x1729 : Nat +x1729 = 1729 + +x1730 : Nat +x1730 = 1730 + +x1731 : Nat +x1731 = 1731 + +x1732 : Nat +x1732 = 1732 + +x1733 : Nat +x1733 = 1733 + +x1734 : Nat +x1734 = 1734 + +x1735 : Nat +x1735 = 1735 + +x1736 : Nat +x1736 = 1736 + +x1737 : Nat +x1737 = 1737 + +x1738 : Nat +x1738 = 1738 + +x1739 : Nat +x1739 = 1739 + +x1740 : Nat +x1740 = 1740 + +x1741 : Nat +x1741 = 1741 + +x1742 : Nat +x1742 = 1742 + +x1743 : Nat +x1743 = 1743 + +x1744 : Nat +x1744 = 1744 + +x1745 : Nat +x1745 = 1745 + +x1746 : Nat +x1746 = 1746 + +x1747 : Nat +x1747 = 1747 + +x1748 : Nat +x1748 = 1748 + +x1749 : Nat +x1749 = 1749 + +x1750 : Nat +x1750 = 1750 + +x1751 : Nat +x1751 = 1751 + +x1752 : Nat +x1752 = 1752 + +x1753 : Nat +x1753 = 1753 + +x1754 : Nat +x1754 = 1754 + +x1755 : Nat +x1755 = 1755 + +x1756 : Nat +x1756 = 1756 + +x1757 : Nat +x1757 = 1757 + +x1758 : Nat +x1758 = 1758 + +x1759 : Nat +x1759 = 1759 + +x1760 : Nat +x1760 = 1760 + +x1761 : Nat +x1761 = 1761 + +x1762 : Nat +x1762 = 1762 + +x1763 : Nat +x1763 = 1763 + +x1764 : Nat +x1764 = 1764 + +x1765 : Nat +x1765 = 1765 + +x1766 : Nat +x1766 = 1766 + +x1767 : Nat +x1767 = 1767 + +x1768 : Nat +x1768 = 1768 + +x1769 : Nat +x1769 = 1769 + +x1770 : Nat +x1770 = 1770 + +x1771 : Nat +x1771 = 1771 + +x1772 : Nat +x1772 = 1772 + +x1773 : Nat +x1773 = 1773 + +x1774 : Nat +x1774 = 1774 + +x1775 : Nat +x1775 = 1775 + +x1776 : Nat +x1776 = 1776 + +x1777 : Nat +x1777 = 1777 + +x1778 : Nat +x1778 = 1778 + +x1779 : Nat +x1779 = 1779 + +x1780 : Nat +x1780 = 1780 + +x1781 : Nat +x1781 = 1781 + +x1782 : Nat +x1782 = 1782 + +x1783 : Nat +x1783 = 1783 + +x1784 : Nat +x1784 = 1784 + +x1785 : Nat +x1785 = 1785 + +x1786 : Nat +x1786 = 1786 + +x1787 : Nat +x1787 = 1787 + +x1788 : Nat +x1788 = 1788 + +x1789 : Nat +x1789 = 1789 + +x1790 : Nat +x1790 = 1790 + +x1791 : Nat +x1791 = 1791 + +x1792 : Nat +x1792 = 1792 + +x1793 : Nat +x1793 = 1793 + +x1794 : Nat +x1794 = 1794 + +x1795 : Nat +x1795 = 1795 + +x1796 : Nat +x1796 = 1796 + +x1797 : Nat +x1797 = 1797 + +x1798 : Nat +x1798 = 1798 + +x1799 : Nat +x1799 = 1799 + +x1800 : Nat +x1800 = 1800 + +x1801 : Nat +x1801 = 1801 + +x1802 : Nat +x1802 = 1802 + +x1803 : Nat +x1803 = 1803 + +x1804 : Nat +x1804 = 1804 + +x1805 : Nat +x1805 = 1805 + +x1806 : Nat +x1806 = 1806 + +x1807 : Nat +x1807 = 1807 + +x1808 : Nat +x1808 = 1808 + +x1809 : Nat +x1809 = 1809 + +x1810 : Nat +x1810 = 1810 + +x1811 : Nat +x1811 = 1811 + +x1812 : Nat +x1812 = 1812 + +x1813 : Nat +x1813 = 1813 + +x1814 : Nat +x1814 = 1814 + +x1815 : Nat +x1815 = 1815 + +x1816 : Nat +x1816 = 1816 + +x1817 : Nat +x1817 = 1817 + +x1818 : Nat +x1818 = 1818 + +x1819 : Nat +x1819 = 1819 + +x1820 : Nat +x1820 = 1820 + +x1821 : Nat +x1821 = 1821 + +x1822 : Nat +x1822 = 1822 + +x1823 : Nat +x1823 = 1823 + +x1824 : Nat +x1824 = 1824 + +x1825 : Nat +x1825 = 1825 + +x1826 : Nat +x1826 = 1826 + +x1827 : Nat +x1827 = 1827 + +x1828 : Nat +x1828 = 1828 + +x1829 : Nat +x1829 = 1829 + +x1830 : Nat +x1830 = 1830 + +x1831 : Nat +x1831 = 1831 + +x1832 : Nat +x1832 = 1832 + +x1833 : Nat +x1833 = 1833 + +x1834 : Nat +x1834 = 1834 + +x1835 : Nat +x1835 = 1835 + +x1836 : Nat +x1836 = 1836 + +x1837 : Nat +x1837 = 1837 + +x1838 : Nat +x1838 = 1838 + +x1839 : Nat +x1839 = 1839 + +x1840 : Nat +x1840 = 1840 + +x1841 : Nat +x1841 = 1841 + +x1842 : Nat +x1842 = 1842 + +x1843 : Nat +x1843 = 1843 + +x1844 : Nat +x1844 = 1844 + +x1845 : Nat +x1845 = 1845 + +x1846 : Nat +x1846 = 1846 + +x1847 : Nat +x1847 = 1847 + +x1848 : Nat +x1848 = 1848 + +x1849 : Nat +x1849 = 1849 + +x1850 : Nat +x1850 = 1850 + +x1851 : Nat +x1851 = 1851 + +x1852 : Nat +x1852 = 1852 + +x1853 : Nat +x1853 = 1853 + +x1854 : Nat +x1854 = 1854 + +x1855 : Nat +x1855 = 1855 + +x1856 : Nat +x1856 = 1856 + +x1857 : Nat +x1857 = 1857 + +x1858 : Nat +x1858 = 1858 + +x1859 : Nat +x1859 = 1859 + +x1860 : Nat +x1860 = 1860 + +x1861 : Nat +x1861 = 1861 + +x1862 : Nat +x1862 = 1862 + +x1863 : Nat +x1863 = 1863 + +x1864 : Nat +x1864 = 1864 + +x1865 : Nat +x1865 = 1865 + +x1866 : Nat +x1866 = 1866 + +x1867 : Nat +x1867 = 1867 + +x1868 : Nat +x1868 = 1868 + +x1869 : Nat +x1869 = 1869 + +x1870 : Nat +x1870 = 1870 + +x1871 : Nat +x1871 = 1871 + +x1872 : Nat +x1872 = 1872 + +x1873 : Nat +x1873 = 1873 + +x1874 : Nat +x1874 = 1874 + +x1875 : Nat +x1875 = 1875 + +x1876 : Nat +x1876 = 1876 + +x1877 : Nat +x1877 = 1877 + +x1878 : Nat +x1878 = 1878 + +x1879 : Nat +x1879 = 1879 + +x1880 : Nat +x1880 = 1880 + +x1881 : Nat +x1881 = 1881 + +x1882 : Nat +x1882 = 1882 + +x1883 : Nat +x1883 = 1883 + +x1884 : Nat +x1884 = 1884 + +x1885 : Nat +x1885 = 1885 + +x1886 : Nat +x1886 = 1886 + +x1887 : Nat +x1887 = 1887 + +x1888 : Nat +x1888 = 1888 + +x1889 : Nat +x1889 = 1889 + +x1890 : Nat +x1890 = 1890 + +x1891 : Nat +x1891 = 1891 + +x1892 : Nat +x1892 = 1892 + +x1893 : Nat +x1893 = 1893 + +x1894 : Nat +x1894 = 1894 + +x1895 : Nat +x1895 = 1895 + +x1896 : Nat +x1896 = 1896 + +x1897 : Nat +x1897 = 1897 + +x1898 : Nat +x1898 = 1898 + +x1899 : Nat +x1899 = 1899 + +x1900 : Nat +x1900 = 1900 + +x1901 : Nat +x1901 = 1901 + +x1902 : Nat +x1902 = 1902 + +x1903 : Nat +x1903 = 1903 + +x1904 : Nat +x1904 = 1904 + +x1905 : Nat +x1905 = 1905 + +x1906 : Nat +x1906 = 1906 + +x1907 : Nat +x1907 = 1907 + +x1908 : Nat +x1908 = 1908 + +x1909 : Nat +x1909 = 1909 + +x1910 : Nat +x1910 = 1910 + +x1911 : Nat +x1911 = 1911 + +x1912 : Nat +x1912 = 1912 + +x1913 : Nat +x1913 = 1913 + +x1914 : Nat +x1914 = 1914 + +x1915 : Nat +x1915 = 1915 + +x1916 : Nat +x1916 = 1916 + +x1917 : Nat +x1917 = 1917 + +x1918 : Nat +x1918 = 1918 + +x1919 : Nat +x1919 = 1919 + +x1920 : Nat +x1920 = 1920 + +x1921 : Nat +x1921 = 1921 + +x1922 : Nat +x1922 = 1922 + +x1923 : Nat +x1923 = 1923 + +x1924 : Nat +x1924 = 1924 + +x1925 : Nat +x1925 = 1925 + +x1926 : Nat +x1926 = 1926 + +x1927 : Nat +x1927 = 1927 + +x1928 : Nat +x1928 = 1928 + +x1929 : Nat +x1929 = 1929 + +x1930 : Nat +x1930 = 1930 + +x1931 : Nat +x1931 = 1931 + +x1932 : Nat +x1932 = 1932 + +x1933 : Nat +x1933 = 1933 + +x1934 : Nat +x1934 = 1934 + +x1935 : Nat +x1935 = 1935 + +x1936 : Nat +x1936 = 1936 + +x1937 : Nat +x1937 = 1937 + +x1938 : Nat +x1938 = 1938 + +x1939 : Nat +x1939 = 1939 + +x1940 : Nat +x1940 = 1940 + +x1941 : Nat +x1941 = 1941 + +x1942 : Nat +x1942 = 1942 + +x1943 : Nat +x1943 = 1943 + +x1944 : Nat +x1944 = 1944 + +x1945 : Nat +x1945 = 1945 + +x1946 : Nat +x1946 = 1946 + +x1947 : Nat +x1947 = 1947 + +x1948 : Nat +x1948 = 1948 + +x1949 : Nat +x1949 = 1949 + +x1950 : Nat +x1950 = 1950 + +x1951 : Nat +x1951 = 1951 + +x1952 : Nat +x1952 = 1952 + +x1953 : Nat +x1953 = 1953 + +x1954 : Nat +x1954 = 1954 + +x1955 : Nat +x1955 = 1955 + +x1956 : Nat +x1956 = 1956 + +x1957 : Nat +x1957 = 1957 + +x1958 : Nat +x1958 = 1958 + +x1959 : Nat +x1959 = 1959 + +x1960 : Nat +x1960 = 1960 + +x1961 : Nat +x1961 = 1961 + +x1962 : Nat +x1962 = 1962 + +x1963 : Nat +x1963 = 1963 + +x1964 : Nat +x1964 = 1964 + +x1965 : Nat +x1965 = 1965 + +x1966 : Nat +x1966 = 1966 + +x1967 : Nat +x1967 = 1967 + +x1968 : Nat +x1968 = 1968 + +x1969 : Nat +x1969 = 1969 + +x1970 : Nat +x1970 = 1970 + +x1971 : Nat +x1971 = 1971 + +x1972 : Nat +x1972 = 1972 + +x1973 : Nat +x1973 = 1973 + +x1974 : Nat +x1974 = 1974 + +x1975 : Nat +x1975 = 1975 + +x1976 : Nat +x1976 = 1976 + +x1977 : Nat +x1977 = 1977 + +x1978 : Nat +x1978 = 1978 + +x1979 : Nat +x1979 = 1979 + +x1980 : Nat +x1980 = 1980 + +x1981 : Nat +x1981 = 1981 + +x1982 : Nat +x1982 = 1982 + +x1983 : Nat +x1983 = 1983 + +x1984 : Nat +x1984 = 1984 + +x1985 : Nat +x1985 = 1985 + +x1986 : Nat +x1986 = 1986 + +x1987 : Nat +x1987 = 1987 + +x1988 : Nat +x1988 = 1988 + +x1989 : Nat +x1989 = 1989 + +x1990 : Nat +x1990 = 1990 + +x1991 : Nat +x1991 = 1991 + +x1992 : Nat +x1992 = 1992 + +x1993 : Nat +x1993 = 1993 + +x1994 : Nat +x1994 = 1994 + +x1995 : Nat +x1995 = 1995 + +x1996 : Nat +x1996 = 1996 + +x1997 : Nat +x1997 = 1997 + +x1998 : Nat +x1998 = 1998 + +x1999 : Nat +x1999 = 1999 + +x2000 : Nat +x2000 = 2000 + +x2001 : Nat +x2001 = 2001 + +x2002 : Nat +x2002 = 2002 + +x2003 : Nat +x2003 = 2003 + +x2004 : Nat +x2004 = 2004 + +x2005 : Nat +x2005 = 2005 + +x2006 : Nat +x2006 = 2006 + +x2007 : Nat +x2007 = 2007 + +x2008 : Nat +x2008 = 2008 + +x2009 : Nat +x2009 = 2009 + +x2010 : Nat +x2010 = 2010 + +x2011 : Nat +x2011 = 2011 + +x2012 : Nat +x2012 = 2012 + +x2013 : Nat +x2013 = 2013 + +x2014 : Nat +x2014 = 2014 + +x2015 : Nat +x2015 = 2015 + +x2016 : Nat +x2016 = 2016 + +x2017 : Nat +x2017 = 2017 + +x2018 : Nat +x2018 = 2018 + +x2019 : Nat +x2019 = 2019 + +x2020 : Nat +x2020 = 2020 + +x2021 : Nat +x2021 = 2021 + +x2022 : Nat +x2022 = 2022 + +x2023 : Nat +x2023 = 2023 + +x2024 : Nat +x2024 = 2024 + +x2025 : Nat +x2025 = 2025 + +x2026 : Nat +x2026 = 2026 + +x2027 : Nat +x2027 = 2027 + +x2028 : Nat +x2028 = 2028 + +x2029 : Nat +x2029 = 2029 + +x2030 : Nat +x2030 = 2030 + +x2031 : Nat +x2031 = 2031 + +x2032 : Nat +x2032 = 2032 + +x2033 : Nat +x2033 = 2033 + +x2034 : Nat +x2034 = 2034 + +x2035 : Nat +x2035 = 2035 + +x2036 : Nat +x2036 = 2036 + +x2037 : Nat +x2037 = 2037 + +x2038 : Nat +x2038 = 2038 + +x2039 : Nat +x2039 = 2039 + +x2040 : Nat +x2040 = 2040 + +x2041 : Nat +x2041 = 2041 + +x2042 : Nat +x2042 = 2042 + +x2043 : Nat +x2043 = 2043 + +x2044 : Nat +x2044 = 2044 + +x2045 : Nat +x2045 = 2045 + +x2046 : Nat +x2046 = 2046 + +x2047 : Nat +x2047 = 2047 + +x2048 : Nat +x2048 = 2048 + +x2049 : Nat +x2049 = 2049 + +x2050 : Nat +x2050 = 2050 + +x2051 : Nat +x2051 = 2051 + +x2052 : Nat +x2052 = 2052 + +x2053 : Nat +x2053 = 2053 + +x2054 : Nat +x2054 = 2054 + +x2055 : Nat +x2055 = 2055 + +x2056 : Nat +x2056 = 2056 + +x2057 : Nat +x2057 = 2057 + +x2058 : Nat +x2058 = 2058 + +x2059 : Nat +x2059 = 2059 + +x2060 : Nat +x2060 = 2060 + +x2061 : Nat +x2061 = 2061 + +x2062 : Nat +x2062 = 2062 + +x2063 : Nat +x2063 = 2063 + +x2064 : Nat +x2064 = 2064 + +x2065 : Nat +x2065 = 2065 + +x2066 : Nat +x2066 = 2066 + +x2067 : Nat +x2067 = 2067 + +x2068 : Nat +x2068 = 2068 + +x2069 : Nat +x2069 = 2069 + +x2070 : Nat +x2070 = 2070 + +x2071 : Nat +x2071 = 2071 + +x2072 : Nat +x2072 = 2072 + +x2073 : Nat +x2073 = 2073 + +x2074 : Nat +x2074 = 2074 + +x2075 : Nat +x2075 = 2075 + +x2076 : Nat +x2076 = 2076 + +x2077 : Nat +x2077 = 2077 + +x2078 : Nat +x2078 = 2078 + +x2079 : Nat +x2079 = 2079 + +x2080 : Nat +x2080 = 2080 + +x2081 : Nat +x2081 = 2081 + +x2082 : Nat +x2082 = 2082 + +x2083 : Nat +x2083 = 2083 + +x2084 : Nat +x2084 = 2084 + +x2085 : Nat +x2085 = 2085 + +x2086 : Nat +x2086 = 2086 + +x2087 : Nat +x2087 = 2087 + +x2088 : Nat +x2088 = 2088 + +x2089 : Nat +x2089 = 2089 + +x2090 : Nat +x2090 = 2090 + +x2091 : Nat +x2091 = 2091 + +x2092 : Nat +x2092 = 2092 + +x2093 : Nat +x2093 = 2093 + +x2094 : Nat +x2094 = 2094 + +x2095 : Nat +x2095 = 2095 + +x2096 : Nat +x2096 = 2096 + +x2097 : Nat +x2097 = 2097 + +x2098 : Nat +x2098 = 2098 + +x2099 : Nat +x2099 = 2099 + +x2100 : Nat +x2100 = 2100 + +x2101 : Nat +x2101 = 2101 + +x2102 : Nat +x2102 = 2102 + +x2103 : Nat +x2103 = 2103 + +x2104 : Nat +x2104 = 2104 + +x2105 : Nat +x2105 = 2105 + +x2106 : Nat +x2106 = 2106 + +x2107 : Nat +x2107 = 2107 + +x2108 : Nat +x2108 = 2108 + +x2109 : Nat +x2109 = 2109 + +x2110 : Nat +x2110 = 2110 + +x2111 : Nat +x2111 = 2111 + +x2112 : Nat +x2112 = 2112 + +x2113 : Nat +x2113 = 2113 + +x2114 : Nat +x2114 = 2114 + +x2115 : Nat +x2115 = 2115 + +x2116 : Nat +x2116 = 2116 + +x2117 : Nat +x2117 = 2117 + +x2118 : Nat +x2118 = 2118 + +x2119 : Nat +x2119 = 2119 + +x2120 : Nat +x2120 = 2120 + +x2121 : Nat +x2121 = 2121 + +x2122 : Nat +x2122 = 2122 + +x2123 : Nat +x2123 = 2123 + +x2124 : Nat +x2124 = 2124 + +x2125 : Nat +x2125 = 2125 + +x2126 : Nat +x2126 = 2126 + +x2127 : Nat +x2127 = 2127 + +x2128 : Nat +x2128 = 2128 + +x2129 : Nat +x2129 = 2129 + +x2130 : Nat +x2130 = 2130 + +x2131 : Nat +x2131 = 2131 + +x2132 : Nat +x2132 = 2132 + +x2133 : Nat +x2133 = 2133 + +x2134 : Nat +x2134 = 2134 + +x2135 : Nat +x2135 = 2135 + +x2136 : Nat +x2136 = 2136 + +x2137 : Nat +x2137 = 2137 + +x2138 : Nat +x2138 = 2138 + +x2139 : Nat +x2139 = 2139 + +x2140 : Nat +x2140 = 2140 + +x2141 : Nat +x2141 = 2141 + +x2142 : Nat +x2142 = 2142 + +x2143 : Nat +x2143 = 2143 + +x2144 : Nat +x2144 = 2144 + +x2145 : Nat +x2145 = 2145 + +x2146 : Nat +x2146 = 2146 + +x2147 : Nat +x2147 = 2147 + +x2148 : Nat +x2148 = 2148 + +x2149 : Nat +x2149 = 2149 + +x2150 : Nat +x2150 = 2150 + +x2151 : Nat +x2151 = 2151 + +x2152 : Nat +x2152 = 2152 + +x2153 : Nat +x2153 = 2153 + +x2154 : Nat +x2154 = 2154 + +x2155 : Nat +x2155 = 2155 + +x2156 : Nat +x2156 = 2156 + +x2157 : Nat +x2157 = 2157 + +x2158 : Nat +x2158 = 2158 + +x2159 : Nat +x2159 = 2159 + +x2160 : Nat +x2160 = 2160 + +x2161 : Nat +x2161 = 2161 + +x2162 : Nat +x2162 = 2162 + +x2163 : Nat +x2163 = 2163 + +x2164 : Nat +x2164 = 2164 + +x2165 : Nat +x2165 = 2165 + +x2166 : Nat +x2166 = 2166 + +x2167 : Nat +x2167 = 2167 + +x2168 : Nat +x2168 = 2168 + +x2169 : Nat +x2169 = 2169 + +x2170 : Nat +x2170 = 2170 + +x2171 : Nat +x2171 = 2171 + +x2172 : Nat +x2172 = 2172 + +x2173 : Nat +x2173 = 2173 + +x2174 : Nat +x2174 = 2174 + +x2175 : Nat +x2175 = 2175 + +x2176 : Nat +x2176 = 2176 + +x2177 : Nat +x2177 = 2177 + +x2178 : Nat +x2178 = 2178 + +x2179 : Nat +x2179 = 2179 + +x2180 : Nat +x2180 = 2180 + +x2181 : Nat +x2181 = 2181 + +x2182 : Nat +x2182 = 2182 + +x2183 : Nat +x2183 = 2183 + +x2184 : Nat +x2184 = 2184 + +x2185 : Nat +x2185 = 2185 + +x2186 : Nat +x2186 = 2186 + +x2187 : Nat +x2187 = 2187 + +x2188 : Nat +x2188 = 2188 + +x2189 : Nat +x2189 = 2189 + +x2190 : Nat +x2190 = 2190 + +x2191 : Nat +x2191 = 2191 + +x2192 : Nat +x2192 = 2192 + +x2193 : Nat +x2193 = 2193 + +x2194 : Nat +x2194 = 2194 + +x2195 : Nat +x2195 = 2195 + +x2196 : Nat +x2196 = 2196 + +x2197 : Nat +x2197 = 2197 + +x2198 : Nat +x2198 = 2198 + +x2199 : Nat +x2199 = 2199 + +x2200 : Nat +x2200 = 2200 + +x2201 : Nat +x2201 = 2201 + +x2202 : Nat +x2202 = 2202 + +x2203 : Nat +x2203 = 2203 + +x2204 : Nat +x2204 = 2204 + +x2205 : Nat +x2205 = 2205 + +x2206 : Nat +x2206 = 2206 + +x2207 : Nat +x2207 = 2207 + +x2208 : Nat +x2208 = 2208 + +x2209 : Nat +x2209 = 2209 + +x2210 : Nat +x2210 = 2210 + +x2211 : Nat +x2211 = 2211 + +x2212 : Nat +x2212 = 2212 + +x2213 : Nat +x2213 = 2213 + +x2214 : Nat +x2214 = 2214 + +x2215 : Nat +x2215 = 2215 + +x2216 : Nat +x2216 = 2216 + +x2217 : Nat +x2217 = 2217 + +x2218 : Nat +x2218 = 2218 + +x2219 : Nat +x2219 = 2219 + +x2220 : Nat +x2220 = 2220 + +x2221 : Nat +x2221 = 2221 + +x2222 : Nat +x2222 = 2222 + +x2223 : Nat +x2223 = 2223 + +x2224 : Nat +x2224 = 2224 + +x2225 : Nat +x2225 = 2225 + +x2226 : Nat +x2226 = 2226 + +x2227 : Nat +x2227 = 2227 + +x2228 : Nat +x2228 = 2228 + +x2229 : Nat +x2229 = 2229 + +x2230 : Nat +x2230 = 2230 + +x2231 : Nat +x2231 = 2231 + +x2232 : Nat +x2232 = 2232 + +x2233 : Nat +x2233 = 2233 + +x2234 : Nat +x2234 = 2234 + +x2235 : Nat +x2235 = 2235 + +x2236 : Nat +x2236 = 2236 + +x2237 : Nat +x2237 = 2237 + +x2238 : Nat +x2238 = 2238 + +x2239 : Nat +x2239 = 2239 + +x2240 : Nat +x2240 = 2240 + +x2241 : Nat +x2241 = 2241 + +x2242 : Nat +x2242 = 2242 + +x2243 : Nat +x2243 = 2243 + +x2244 : Nat +x2244 = 2244 + +x2245 : Nat +x2245 = 2245 + +x2246 : Nat +x2246 = 2246 + +x2247 : Nat +x2247 = 2247 + +x2248 : Nat +x2248 = 2248 + +x2249 : Nat +x2249 = 2249 + +x2250 : Nat +x2250 = 2250 + +x2251 : Nat +x2251 = 2251 + +x2252 : Nat +x2252 = 2252 + +x2253 : Nat +x2253 = 2253 + +x2254 : Nat +x2254 = 2254 + +x2255 : Nat +x2255 = 2255 + +x2256 : Nat +x2256 = 2256 + +x2257 : Nat +x2257 = 2257 + +x2258 : Nat +x2258 = 2258 + +x2259 : Nat +x2259 = 2259 + +x2260 : Nat +x2260 = 2260 + +x2261 : Nat +x2261 = 2261 + +x2262 : Nat +x2262 = 2262 + +x2263 : Nat +x2263 = 2263 + +x2264 : Nat +x2264 = 2264 + +x2265 : Nat +x2265 = 2265 + +x2266 : Nat +x2266 = 2266 + +x2267 : Nat +x2267 = 2267 + +x2268 : Nat +x2268 = 2268 + +x2269 : Nat +x2269 = 2269 + +x2270 : Nat +x2270 = 2270 + +x2271 : Nat +x2271 = 2271 + +x2272 : Nat +x2272 = 2272 + +x2273 : Nat +x2273 = 2273 + +x2274 : Nat +x2274 = 2274 + +x2275 : Nat +x2275 = 2275 + +x2276 : Nat +x2276 = 2276 + +x2277 : Nat +x2277 = 2277 + +x2278 : Nat +x2278 = 2278 + +x2279 : Nat +x2279 = 2279 + +x2280 : Nat +x2280 = 2280 + +x2281 : Nat +x2281 = 2281 + +x2282 : Nat +x2282 = 2282 + +x2283 : Nat +x2283 = 2283 + +x2284 : Nat +x2284 = 2284 + +x2285 : Nat +x2285 = 2285 + +x2286 : Nat +x2286 = 2286 + +x2287 : Nat +x2287 = 2287 + +x2288 : Nat +x2288 = 2288 + +x2289 : Nat +x2289 = 2289 + +x2290 : Nat +x2290 = 2290 + +x2291 : Nat +x2291 = 2291 + +x2292 : Nat +x2292 = 2292 + +x2293 : Nat +x2293 = 2293 + +x2294 : Nat +x2294 = 2294 + +x2295 : Nat +x2295 = 2295 + +x2296 : Nat +x2296 = 2296 + +x2297 : Nat +x2297 = 2297 + +x2298 : Nat +x2298 = 2298 + +x2299 : Nat +x2299 = 2299 + +x2300 : Nat +x2300 = 2300 + +x2301 : Nat +x2301 = 2301 + +x2302 : Nat +x2302 = 2302 + +x2303 : Nat +x2303 = 2303 + +x2304 : Nat +x2304 = 2304 + +x2305 : Nat +x2305 = 2305 + +x2306 : Nat +x2306 = 2306 + +x2307 : Nat +x2307 = 2307 + +x2308 : Nat +x2308 = 2308 + +x2309 : Nat +x2309 = 2309 + +x2310 : Nat +x2310 = 2310 + +x2311 : Nat +x2311 = 2311 + +x2312 : Nat +x2312 = 2312 + +x2313 : Nat +x2313 = 2313 + +x2314 : Nat +x2314 = 2314 + +x2315 : Nat +x2315 = 2315 + +x2316 : Nat +x2316 = 2316 + +x2317 : Nat +x2317 = 2317 + +x2318 : Nat +x2318 = 2318 + +x2319 : Nat +x2319 = 2319 + +x2320 : Nat +x2320 = 2320 + +x2321 : Nat +x2321 = 2321 + +x2322 : Nat +x2322 = 2322 + +x2323 : Nat +x2323 = 2323 + +x2324 : Nat +x2324 = 2324 + +x2325 : Nat +x2325 = 2325 + +x2326 : Nat +x2326 = 2326 + +x2327 : Nat +x2327 = 2327 + +x2328 : Nat +x2328 = 2328 + +x2329 : Nat +x2329 = 2329 + +x2330 : Nat +x2330 = 2330 + +x2331 : Nat +x2331 = 2331 + +x2332 : Nat +x2332 = 2332 + +x2333 : Nat +x2333 = 2333 + +x2334 : Nat +x2334 = 2334 + +x2335 : Nat +x2335 = 2335 + +x2336 : Nat +x2336 = 2336 + +x2337 : Nat +x2337 = 2337 + +x2338 : Nat +x2338 = 2338 + +x2339 : Nat +x2339 = 2339 + +x2340 : Nat +x2340 = 2340 + +x2341 : Nat +x2341 = 2341 + +x2342 : Nat +x2342 = 2342 + +x2343 : Nat +x2343 = 2343 + +x2344 : Nat +x2344 = 2344 + +x2345 : Nat +x2345 = 2345 + +x2346 : Nat +x2346 = 2346 + +x2347 : Nat +x2347 = 2347 + +x2348 : Nat +x2348 = 2348 + +x2349 : Nat +x2349 = 2349 + +x2350 : Nat +x2350 = 2350 + +x2351 : Nat +x2351 = 2351 + +x2352 : Nat +x2352 = 2352 + +x2353 : Nat +x2353 = 2353 + +x2354 : Nat +x2354 = 2354 + +x2355 : Nat +x2355 = 2355 + +x2356 : Nat +x2356 = 2356 + +x2357 : Nat +x2357 = 2357 + +x2358 : Nat +x2358 = 2358 + +x2359 : Nat +x2359 = 2359 + +x2360 : Nat +x2360 = 2360 + +x2361 : Nat +x2361 = 2361 + +x2362 : Nat +x2362 = 2362 + +x2363 : Nat +x2363 = 2363 + +x2364 : Nat +x2364 = 2364 + +x2365 : Nat +x2365 = 2365 + +x2366 : Nat +x2366 = 2366 + +x2367 : Nat +x2367 = 2367 + +x2368 : Nat +x2368 = 2368 + +x2369 : Nat +x2369 = 2369 + +x2370 : Nat +x2370 = 2370 + +x2371 : Nat +x2371 = 2371 + +x2372 : Nat +x2372 = 2372 + +x2373 : Nat +x2373 = 2373 + +x2374 : Nat +x2374 = 2374 + +x2375 : Nat +x2375 = 2375 + +x2376 : Nat +x2376 = 2376 + +x2377 : Nat +x2377 = 2377 + +x2378 : Nat +x2378 = 2378 + +x2379 : Nat +x2379 = 2379 + +x2380 : Nat +x2380 = 2380 + +x2381 : Nat +x2381 = 2381 + +x2382 : Nat +x2382 = 2382 + +x2383 : Nat +x2383 = 2383 + +x2384 : Nat +x2384 = 2384 + +x2385 : Nat +x2385 = 2385 + +x2386 : Nat +x2386 = 2386 + +x2387 : Nat +x2387 = 2387 + +x2388 : Nat +x2388 = 2388 + +x2389 : Nat +x2389 = 2389 + +x2390 : Nat +x2390 = 2390 + +x2391 : Nat +x2391 = 2391 + +x2392 : Nat +x2392 = 2392 + +x2393 : Nat +x2393 = 2393 + +x2394 : Nat +x2394 = 2394 + +x2395 : Nat +x2395 = 2395 + +x2396 : Nat +x2396 = 2396 + +x2397 : Nat +x2397 = 2397 + +x2398 : Nat +x2398 = 2398 + +x2399 : Nat +x2399 = 2399 + +x2400 : Nat +x2400 = 2400 + +x2401 : Nat +x2401 = 2401 + +x2402 : Nat +x2402 = 2402 + +x2403 : Nat +x2403 = 2403 + +x2404 : Nat +x2404 = 2404 + +x2405 : Nat +x2405 = 2405 + +x2406 : Nat +x2406 = 2406 + +x2407 : Nat +x2407 = 2407 + +x2408 : Nat +x2408 = 2408 + +x2409 : Nat +x2409 = 2409 + +x2410 : Nat +x2410 = 2410 + +x2411 : Nat +x2411 = 2411 + +x2412 : Nat +x2412 = 2412 + +x2413 : Nat +x2413 = 2413 + +x2414 : Nat +x2414 = 2414 + +x2415 : Nat +x2415 = 2415 + +x2416 : Nat +x2416 = 2416 + +x2417 : Nat +x2417 = 2417 + +x2418 : Nat +x2418 = 2418 + +x2419 : Nat +x2419 = 2419 + +x2420 : Nat +x2420 = 2420 + +x2421 : Nat +x2421 = 2421 + +x2422 : Nat +x2422 = 2422 + +x2423 : Nat +x2423 = 2423 + +x2424 : Nat +x2424 = 2424 + +x2425 : Nat +x2425 = 2425 + +x2426 : Nat +x2426 = 2426 + +x2427 : Nat +x2427 = 2427 + +x2428 : Nat +x2428 = 2428 + +x2429 : Nat +x2429 = 2429 + +x2430 : Nat +x2430 = 2430 + +x2431 : Nat +x2431 = 2431 + +x2432 : Nat +x2432 = 2432 + +x2433 : Nat +x2433 = 2433 + +x2434 : Nat +x2434 = 2434 + +x2435 : Nat +x2435 = 2435 + +x2436 : Nat +x2436 = 2436 + +x2437 : Nat +x2437 = 2437 + +x2438 : Nat +x2438 = 2438 + +x2439 : Nat +x2439 = 2439 + +x2440 : Nat +x2440 = 2440 + +x2441 : Nat +x2441 = 2441 + +x2442 : Nat +x2442 = 2442 + +x2443 : Nat +x2443 = 2443 + +x2444 : Nat +x2444 = 2444 + +x2445 : Nat +x2445 = 2445 + +x2446 : Nat +x2446 = 2446 + +x2447 : Nat +x2447 = 2447 + +x2448 : Nat +x2448 = 2448 + +x2449 : Nat +x2449 = 2449 + +x2450 : Nat +x2450 = 2450 + +x2451 : Nat +x2451 = 2451 + +x2452 : Nat +x2452 = 2452 + +x2453 : Nat +x2453 = 2453 + +x2454 : Nat +x2454 = 2454 + +x2455 : Nat +x2455 = 2455 + +x2456 : Nat +x2456 = 2456 + +x2457 : Nat +x2457 = 2457 + +x2458 : Nat +x2458 = 2458 + +x2459 : Nat +x2459 = 2459 + +x2460 : Nat +x2460 = 2460 + +x2461 : Nat +x2461 = 2461 + +x2462 : Nat +x2462 = 2462 + +x2463 : Nat +x2463 = 2463 + +x2464 : Nat +x2464 = 2464 + +x2465 : Nat +x2465 = 2465 + +x2466 : Nat +x2466 = 2466 + +x2467 : Nat +x2467 = 2467 + +x2468 : Nat +x2468 = 2468 + +x2469 : Nat +x2469 = 2469 + +x2470 : Nat +x2470 = 2470 + +x2471 : Nat +x2471 = 2471 + +x2472 : Nat +x2472 = 2472 + +x2473 : Nat +x2473 = 2473 + +x2474 : Nat +x2474 = 2474 + +x2475 : Nat +x2475 = 2475 + +x2476 : Nat +x2476 = 2476 + +x2477 : Nat +x2477 = 2477 + +x2478 : Nat +x2478 = 2478 + +x2479 : Nat +x2479 = 2479 + +x2480 : Nat +x2480 = 2480 + +x2481 : Nat +x2481 = 2481 + +x2482 : Nat +x2482 = 2482 + +x2483 : Nat +x2483 = 2483 + +x2484 : Nat +x2484 = 2484 + +x2485 : Nat +x2485 = 2485 + +x2486 : Nat +x2486 = 2486 + +x2487 : Nat +x2487 = 2487 + +x2488 : Nat +x2488 = 2488 + +x2489 : Nat +x2489 = 2489 + +x2490 : Nat +x2490 = 2490 + +x2491 : Nat +x2491 = 2491 + +x2492 : Nat +x2492 = 2492 + +x2493 : Nat +x2493 = 2493 + +x2494 : Nat +x2494 = 2494 + +x2495 : Nat +x2495 = 2495 + +x2496 : Nat +x2496 = 2496 + +x2497 : Nat +x2497 = 2497 + +x2498 : Nat +x2498 = 2498 + +x2499 : Nat +x2499 = 2499 + +x2500 : Nat +x2500 = 2500 diff --git a/tests/idris2/perf2202/run b/tests/idris2/perf2202/run new file mode 100755 index 0000000000..31891ade86 --- /dev/null +++ b/tests/idris2/perf2202/run @@ -0,0 +1,4 @@ +rm -rf build + +$1 --no-color --console-width 0 --check many10000.idr +$1 --no-color --console-width 0 --check Church.idr \ No newline at end of file