forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_fx_passes.py
861 lines (711 loc) · 25.9 KB
/
test_fx_passes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
# Owner(s): ["module: fx.passes"]
from dataclasses import dataclass
import operator
import logging
import sys
import torch
from torch.fx._symbolic_trace import symbolic_trace
from torch.fx.passes.infra.partitioner import CapabilityBasedPartitioner
from torch.fx.passes.operator_support import OperatorSupport
from torch.fx.passes.utils.fuser_utils import fuse_by_partitions
from torch.fx.passes.utils.matcher_utils import SubgraphMatcher
from torch.testing._internal.common_utils import run_tests, parametrize, instantiate_parametrized_tests
from torch.testing._internal.jit_utils import JitTestCase
logging.basicConfig(level=logging.WARNING)
logger = logging.getLogger(__name__)
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
self.linear2 = torch.nn.Linear(4, 4)
self.param = torch.nn.Parameter(torch.rand(4, 4))
def forward(self, a, b, c):
add = a + b
linear_1 = self.linear(add)
add_1 = add + c
add_2 = add_1 + self.param
add_3 = add_1 + linear_1
add_4 = add_2 + add_3
linear_2 = self.linear2(add_4)
add_5 = linear_2 + add_4
add_6 = add_5 + a
relu = add_6.relu()
return add_4, add_6, relu
class TestDeepModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a, b, c):
o = a + b
o = o + 1.0
# testing to avoid DFS uses in passes. Since Python has max recursion depth.
for _ in range(sys.getrecursionlimit() + 1):
o = o - c
return o
class TestPartitionFunctions:
@staticmethod
def forward1(a, b, c):
add = a + b
add_1 = add + b
add_2 = add_1 + c
relu_1 = add_2.relu()
add_3 = add_1 + add_2
add_4 = add_1 + relu_1 + add_3
relu_2 = add_4.relu()
add_5 = relu_2 + add_4
add_6 = add_5 + add_4
return add_4, add_6
@staticmethod
def forward2(a, b, _):
add = a + b
add_1 = add + b
relu_1 = add_1.relu() # blocked by this
add_3 = add_1 + relu_1
add_4 = add_1 + add_3
return add_4, add_1
@staticmethod
def forward3(a, b, c):
add = a + b
add_1 = a + c
add_2 = b + c
return add, add_1, add_2
@staticmethod
def forward4(a, b, c):
add = a + b
add_1 = a + c
add_2 = b + c
return torch.where(add > 0, add_1, add_2)
@staticmethod
def forward5(a, b, c):
# add should be fused right branch, as left branch is not supported
add = a + 1
# left branch
relu = add.relu()
# right branch
add_1 = add + 2
return relu, add_1
@staticmethod
def forward6(a, b, c):
# add should have its own partition, as neither branchs are supported
add = a + 1
# left branch
relu = add.relu()
# right branch
relu_1 = add.relu()
return relu, relu_1
@staticmethod
def forward7(a, b, c):
# both branches are supported, all adds should be fused together
add = a + 1
# left branch
add_1 = add + 2
# right branch is larger
add_2 = add + 1
add_3 = add_2 + 1
return add_3, add_1
@staticmethod
def forward8(a, b, c):
# both branches are in the same partition, add should join the same partition
add = a + 1
# left branch
add_1 = add + 2
# right branch
add_2 = add + 1
# left and right branch merges
add_3 = add_2 + add_1
return add_3
@staticmethod
def forward9(a, b, c):
add = a + 1
# branch 1
add_1 = add + 1
# branch 2
add_2 = add + 1
# branch_3
add_3 = add + 1
out = torch.stack([add_1, add_2, add_3])
return out
@staticmethod
def forward10(a, b, c):
add = a + 1
# branch 1
add_1 = add + 1
# branch 2
add_2 = add + 1
# branch 3: depends on branch 2
add_3 = add + add_2
out = torch.stack([add_1, add_2, add_3])
return out
@staticmethod
def forward11(a, b, c):
add = a + 1
# branch 1
add_1 = add.relu()
# branch 2 depends on branch 1
add_2 = add + add_1
# branch 3
add_3 = add.relu()
out = torch.stack([add_1, add_2, add_3])
return out
@staticmethod
def forward12(a, b, c):
b0 = a + 1.0
c0 = a + 1.5
x0 = b0.relu()
x1 = c0.relu()
b1 = b0 + x1
c1 = c0 + 1.2
# c2 has dependency on x0 & b0, when we merge {c0, c1, c2}
# this dependency should be updated to the fusion group and reflected
# on the decision to not fuse b0 & b1, which forms a cyclic dependency in
# the new graph
c2 = x0 + c0
return b1, c2
@staticmethod
def forward13(a, b, c):
a0, a1, a2, a3 = a.split(1, 0)
b1 = a0 + b
c1 = a1 + c
return b1 + c1
@staticmethod
def forward14(a, b, c):
a0, a1 = torch.ops.aten.std_mean(a)
out = a0 + 1.0
return out
@staticmethod
def forward15(a, b, c):
a0 = torch.ops.aten.view(a, [2, 2])
a1 = torch.ops.aten.permute(a0, [1, 0])
a2 = a1 + 1.0
a3 = torch.ops.aten.permute(a2, [1, 0])
a4 = a3 + 1.0
a5 = torch.ops.aten.permute(a4, [1, 0])
return torch.ops.aten.permute(a5, [1, 0])
@staticmethod
def forward16(a, b, c):
a0 = a - 1.0
a1 = torch.ops.aten.view(a0, [2, 2])
a2 = torch.ops.aten.permute(a1, [1, 0])
a3 = a2 + 1.0
a4 = torch.ops.aten.permute(a3, [1, 0])
a5 = a4 + 1.0
a6 = torch.ops.aten.permute(a5, [1, 0])
a7 = torch.ops.aten.permute(a6, [1, 0])
return a7 - 1.0
@staticmethod
def forward17(a, b, c, d, e, f):
a0 = a + b
a1 = c + d
a2 = e + f
return a0, a1, a2
# A mock OperatorSupport class, where only operator.add is supported
class MockOperatorSupport(OperatorSupport):
def is_node_supported(self, submodules, node: torch.fx.Node) -> bool:
return (node.op == "call_function" and
node.target in {operator.add, operator.getitem,
torch.ops.aten.view,
torch.ops.aten.permute,
torch.ops.aten.std_mean})
@instantiate_parametrized_tests
class TestFXGraphPasses(JitTestCase):
@parametrize("fn, expected_partition, bookend_non_compute_pass", [
(TestPartitionFunctions.forward1, [["add_7", "add_6"], ["add_5", "add_4", "add_3"], ["add_2", "add_1", "add"]], False),
(TestPartitionFunctions.forward2, [["add_3", "add_2"], ["add_1", "add"]], False),
# 1 horizontal fusion with common producer
(TestPartitionFunctions.forward3, [["add_2", "add_1", "add"]], False),
(TestPartitionFunctions.forward4, [["add_2", "add_1", "add"]], False),
# 2 branches cases
(TestPartitionFunctions.forward5, [["add_1", "add"]], False),
(TestPartitionFunctions.forward6, [["add"]], False),
(TestPartitionFunctions.forward7, [["add_3", "add_2", "add", "add_1"]], False),
(TestPartitionFunctions.forward8, [["add_3", "add_2", "add", "add_1"]], False),
# 3 branch cases
(TestPartitionFunctions.forward9, [['add_3', 'add_2', 'add_1', 'add']], False),
(TestPartitionFunctions.forward10, [['add_3', 'add_2', 'add', 'add_1']], False),
(TestPartitionFunctions.forward11, [['add_1'], ['add']], False),
# 4 not necessarily the only partition, just to verify that there's no cyclic dependency after partition
(TestPartitionFunctions.forward12, [["add_2", "add_3", "add_4"], ["add", "add_1"]], False),
# 5 getitem special case
(TestPartitionFunctions.forward13, [["add_2", "add_1", "add"]], False),
(TestPartitionFunctions.forward14, [["add", "std_mean", "getitem", "getitem_1"]], False),
# 6 bookend non_compute pass
(TestPartitionFunctions.forward15, [["permute_1", "add_1", "add"]], True),
(TestPartitionFunctions.forward15, [['add_1', 'add', 'permute_1', 'view', 'permute_2', 'permute_3', 'permute']], False),
(TestPartitionFunctions.forward16, [["permute_1", "add_1", "add"]], True),
(TestPartitionFunctions.forward16, [['add_1', 'add', 'permute_1', 'view', 'permute_2', 'permute_3', 'permute']], False),
])
def test_partitioner(self, fn, expected_partition, bookend_non_compute_pass):
traced = symbolic_trace(fn)
non_compute_ops = []
if bookend_non_compute_pass:
non_compute_ops = ["torch.ops.aten.view", "torch.ops.aten.permute"]
supported_ops = MockOperatorSupport()
partitioner = CapabilityBasedPartitioner(traced,
supported_ops,
allows_single_node_partition=True,
non_compute_ops=non_compute_ops)
partitions = partitioner.propose_partitions()
if bookend_non_compute_pass:
partitioner.remove_bookend_non_compute_ops(partitions)
partitions_name = [[node.name for node in partition.nodes] for partition in partitions]
assert len(partitions_name) == len(expected_partition)
for i in range(len(partitions_name)):
assert set(partitions_name[i]) == set(expected_partition[i])
fused_graph = partitioner.fuse_partitions(partitions)
a, b, c = torch.rand(4), torch.rand(4), torch.rand(4)
expected = fn(a, b, c)
result = fused_graph(a, b, c)
torch.testing.assert_close(expected, result)
@parametrize("fn, expected_partition", [
(TestPartitionFunctions.forward17, [['add', 'add_1', 'add_2']]),
])
def test_partitioner_independent_output(self, fn, expected_partition):
traced = symbolic_trace(fn)
supported_ops = MockOperatorSupport()
partitioner = CapabilityBasedPartitioner(traced,
supported_ops,
allows_single_node_partition=True)
partitions = partitioner.propose_partitions()
partitions_name = [[node.name for node in partition.nodes] for partition in partitions]
assert len(partitions_name) == len(expected_partition)
for i in range(len(partitions_name)):
assert set(partitions_name[i]) == set(expected_partition[i])
fused_graph = partitioner.fuse_partitions(partitions)
a, b, c, d, e, f = torch.rand(4), torch.rand(4), torch.rand(4), torch.rand(4), torch.rand(4), torch.rand(4)
expected = fn(a, b, c, d, e, f)
result = fused_graph(a, b, c, d, e, f)
torch.testing.assert_close(expected, result)
@parametrize("partition", [
[['add', 'add_1'], ['add_5', 'add_6']],
[['add', 'add_1', 'add_2']], # vertical fusion
[['add_2', 'add_3']], # horizontal fusion
[['add_3', 'add_4']],
[['add_6', 'add_5']], # arbitray node order
[['add_4', 'add_1', 'add_3', 'add_2']], # arbitray node order
[['add_5', 'add_6'], ['add_1', 'add_2', 'add_3', 'add_4']], # arbitray partition order
[['add_5', 'linear2']], # includes call_function + call_module node
[['add_6', 'relu']], # includes call_function + call_module node
[['param', 'add_2']], # includes get_attr + call_module nodes
[['param', 'add_1', 'linear']], # includes get_attr + call_function + call_module nodes
[["add", "linear", "add_1", "param", "add_2", "add_3", "add_4", "linear2", "add_5", "add_6", "relu"]], # full graph
])
def test_fuser_util(self, partition):
m = TestModule()
gm = symbolic_trace(m)
nodes_by_name = {node.name : node for node in gm.graph.nodes}
partitions = []
for node_names in partition:
partitions.append([nodes_by_name[name] for name in node_names])
fused_graph = fuse_by_partitions(gm, partitions)
a, b, c = torch.rand(4), torch.rand(4), torch.rand(4)
expected = m(a, b, c)
result = fused_graph(a, b, c)
torch.testing.assert_close(expected, result)
@parametrize("partition", [
[['add', 'add_1'], ['add_1', 'add_5', 'add_6']], # add_1 exists in multiple partitions
[['add', 'add_1', 'add_3']], # invalid partition: circular dependency
[['add_4', 'add_5']], # invalid partition: circular dependency
[['relu', 'add_5']], # invalid partition: circular dependency
])
def test_fuser_util_xfail(self, partition):
m = TestModule()
gm = symbolic_trace(m)
nodes_by_name = {node.name : node for node in gm.graph.nodes}
partitions = []
for node_names in partition:
partitions.append([nodes_by_name[name] for name in node_names])
with self.assertRaises(Exception):
fuse_by_partitions(gm, partitions)
def test_fuser_pass_deep_model(self):
m = TestDeepModule()
traced = symbolic_trace(m)
supported_ops = MockOperatorSupport()
partitioner = CapabilityBasedPartitioner(traced,
supported_ops,
allows_single_node_partition=True)
partitions = partitioner.propose_partitions()
@dataclass
class TestCase:
match_output: bool
match_placeholder: bool
num_matches: int
remove_overlapping_matches: bool = True
class SingleNodePattern:
@staticmethod
def forward(x):
val = torch.neg(x)
return torch.add(val, val)
@staticmethod
def pattern(a):
return torch.neg(a)
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 0),
TestCase(False, True, 1),
TestCase(True, True, 0)
]
class SimplePattern:
@staticmethod
def forward(x, w1, w2):
m1 = torch.cat([w1, w2]).sum()
m2 = torch.cat([w2, w1]).sum()
m3 = torch.cat([m1, m2]).sum()
return x + torch.max(m1) + torch.max(m2) + m3
@staticmethod
def pattern(a, b):
return torch.cat([a, b]).sum()
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 3),
TestCase(True, False, 0),
TestCase(False, True, 2),
TestCase(True, True, 0)
]
class SimpleFullGraphMatching:
@staticmethod
def forward(x):
a = torch.neg(x)
return torch.add(a, a)
@staticmethod
def pattern(x):
a = torch.neg(x)
return torch.add(a, a)
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 1),
TestCase(False, True, 1),
TestCase(True, True, 1)
]
class DiamondShapePatternTestCase:
@staticmethod
def forward(x):
a = torch.neg(x)
a = a.relu()
left = a.sigmoid()
right = a.relu()
out = left + right
return out
@staticmethod
def pattern(a):
a = a.relu()
left = a.sigmoid()
right = a.relu()
out = left + right
return out
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 1),
TestCase(False, True, 0),
TestCase(True, True, 0)
]
class NonFullyContainedMatches:
@staticmethod
def forward(x, w1, w2, b1, b2):
# fully contained matched subgraph
m1 = torch.cat([w1, w2])
m2 = torch.cat([x, b2])
t0 = torch.addmm(b1, m1, m2.t())
t0_sum = torch.sum(t0) # use of t0 is not leaking
# leaking matched subgraph, m3 is leaked
m3 = torch.cat([w1, w2])
m4 = torch.cat([x, b2])
t1 = torch.addmm(b1, m3, m4.t())
m3_sum = torch.sum(m3)
return t0_sum, m3_sum
@staticmethod
def pattern(x, w1, w2, b1, b2):
m1 = torch.cat([w1, w2])
m2 = torch.cat([x, b2])
return torch.addmm(b1, m1, m2.t())
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 0),
TestCase(False, True, 1), # leaked used of placeholder is not leaking
]
class ChainRepeatedPattern:
@staticmethod
def forward(x):
x = torch.sigmoid(x)
x = torch.sigmoid(x)
x = torch.sigmoid(x)
return torch.sigmoid(x)
@staticmethod
def pattern(x):
return torch.sigmoid(torch.sigmoid(x))
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 3, remove_overlapping_matches=False),
TestCase(False, False, 2, remove_overlapping_matches=True),
TestCase(True, False, 1),
TestCase(False, True, 1),
TestCase(True, True, 0)
]
class QuantizationModel:
@staticmethod
def forward(x):
x += 3
x = x.dequantize()
x = torch.sigmoid(x)
x = x.to(torch.float16)
return x
@staticmethod
def pattern(x):
x = x.dequantize()
x = torch.sigmoid(x)
x = x.to(torch.float16)
return x
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 1),
TestCase(False, True, 0),
TestCase(True, True, 0)
]
class MultipleOutputsWithDependency:
@staticmethod
def forward(x):
y = x.relu()
z = y.sigmoid()
return z, y
@staticmethod
def pattern(a):
b = a.relu()
c = b.sigmoid()
return b, c # outputs have data dependency
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 0),
TestCase(False, True, 1),
TestCase(True, True, 0)
]
class MultipleOutputsWithoutDependency:
@staticmethod
def forward(x):
x = x + 1
# target subgraph to match
x = x.relu()
z = x.sum()
y = x.sigmoid()
out = y.sigmoid() + z.sum()
return out
@staticmethod
def pattern(a):
a = a.relu()
b = a.sigmoid()
c = a.sum()
return b, c
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 0),
TestCase(False, True, 0),
TestCase(True, True, 0)
]
class MultipleOutputsMultipleOverlappingMatches:
@staticmethod
def forward(x):
x = x + 1
# target subgraph to match
x = x.relu()
z = x.sum()
z1 = x.sum()
y = x.sigmoid()
y1 = x.sigmoid()
return z + z1 + y + y1
@staticmethod
def pattern(a):
a = a.relu()
b = a.sigmoid()
c = a.sum()
return a, b, c
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 4, remove_overlapping_matches=False),
TestCase(False, False, 1, remove_overlapping_matches=True),
]
class MultipleOutputsMultipleNonOverlappingMatches:
@staticmethod
def forward(x):
x = x + 1
# target subgraph to match
x = x.relu()
z = x.sum()
y = x.sigmoid()
x = x.relu()
z1 = x.sum()
y1 = x.sigmoid()
return z + z1 + y + y1
@staticmethod
def pattern(a):
a = a.relu()
b = a.sigmoid()
c = a.sum()
return b, c
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
]
class MultipleOutputsIdenticalAnchor:
@staticmethod
def forward(x):
x = x + 1
# target subgraph to match
x = x.relu()
y = x.sigmoid()
y1 = x.sigmoid()
return y, y1
@staticmethod
def pattern(a):
a = a.relu()
b = a.sigmoid()
b1 = a.sigmoid()
return b, b1
test_cases = [
# match_output, match_placeholder, num_matches
# (False, False, 2), # FIXME: currently still matches to 2, should fix to 1
TestCase(True, False, 1),
TestCase(False, True, 0),
]
class MultipleOutputsHorizontalPattern:
@staticmethod
def forward(x):
x = x + 1
# target subgraph to match
y1 = x.relu()
y2 = x.sigmoid()
return y1, y2
@staticmethod
def pattern(a):
b1 = a.relu()
b2 = a.sigmoid()
return b1, b2
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 1),
TestCase(False, True, 0),
TestCase(True, True, 0)
]
class MultiOutputWithWithInvalidMatches:
@staticmethod
def forward(x):
res0 = torch.nn.functional.linear(x, torch.rand(3, 3))
res1 = torch.sigmoid(res0)
res2 = res0 * res1
res3 = torch.sum(res2, dim=1)
return res3
@staticmethod
def pattern(a, b, c):
lin_res = torch.nn.functional.linear(a, b)
mul_res = lin_res * c
return lin_res, mul_res
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 0),
TestCase(True, False, 0),
TestCase(False, True, 0),
]
class QuantizationFp8Pattern:
@classmethod
def setup(cls):
cls.quantization = torch.library.Library("fp8_quantization", "DEF")
cls.quantization.define("quantize_per_tensor_affine_fp8(Tensor self, int dtype, float scale) -> Tensor")
cls.quantization.define("dequantize_per_tensor_affine_fp8(Tensor self, int dtype, float scale) -> Tensor")
@classmethod
def tearDown(cls):
del cls.quantization
@staticmethod
def forward(self, arg0_1, arg1_1):
qt = torch.ops.fp8_quantization
_scale_0 = self._scale_0
quantize_per_tensor_affine_fp8 = qt.quantize_per_tensor_affine_fp8(arg0_1, 0, _scale_0)
dequantize_per_tensor_affine_fp8 = qt.dequantize_per_tensor_affine_fp8(quantize_per_tensor_affine_fp8, 0, _scale_0)
_scale_1 = self._scale_0
quantize_per_tensor_affine_fp8_1 = qt.quantize_per_tensor_affine_fp8(arg1_1, 0, _scale_1)
dequantize_per_tensor_affine_fp8_1 = qt.dequantize_per_tensor_affine_fp8(quantize_per_tensor_affine_fp8_1, 0, _scale_1)
add = torch.ops.aten.add.Tensor(dequantize_per_tensor_affine_fp8, dequantize_per_tensor_affine_fp8_1)
_scale_2 = self._scale_0
quantize_per_tensor_affine_fp8_2 = qt.quantize_per_tensor_affine_fp8(add, 0, _scale_2)
dequantize_per_tensor_affine_fp8_2 = qt.dequantize_per_tensor_affine_fp8(quantize_per_tensor_affine_fp8_2, 0, _scale_2)
return dequantize_per_tensor_affine_fp8_2
@staticmethod
def pattern(a, a_dtype, a_scale, b, b_dtype, b_scale, out_scale):
qt = torch.ops.fp8_quantization
a = qt.dequantize_per_tensor_affine_fp8(a, a_dtype, a_scale)
b = qt.dequantize_per_tensor_affine_fp8(b, b_dtype, b_scale)
output = torch.ops.aten.add.Tensor(a, b)
qt.dequantize_per_tensor_affine_fp8
output = qt.quantize_per_tensor_affine_fp8(output, a_dtype, out_scale)
return output
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
]
class NoAnchorFound:
# This test case is for pattern where no matching anchor is found in the target graph
# `anchor` is the starting point of the pattern matching, it's usually the boundary returning nodes
@staticmethod
def forward(x):
x = x + 1
return x
@staticmethod
def pattern(a):
b1 = a.relu()
return b1
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 0),
TestCase(True, False, 0),
TestCase(False, True, 0),
TestCase(True, True, 0)
]
@instantiate_parametrized_tests
class TestFXMatcherUtils(JitTestCase):
@parametrize("test_model", [
SingleNodePattern,
SimplePattern,
SimpleFullGraphMatching,
DiamondShapePatternTestCase,
NonFullyContainedMatches,
ChainRepeatedPattern,
QuantizationModel,
MultipleOutputsWithDependency,
MultipleOutputsWithoutDependency,
MultipleOutputsMultipleOverlappingMatches,
MultipleOutputsMultipleNonOverlappingMatches,
MultipleOutputsIdenticalAnchor,
MultipleOutputsHorizontalPattern,
MultiOutputWithWithInvalidMatches,
QuantizationFp8Pattern,
NoAnchorFound,
])
def test_subgraph_matcher(self, test_model):
setup = getattr(test_model, "setup", None)
if callable(setup):
setup()
traced = symbolic_trace(test_model.forward)
pattern_traced = symbolic_trace(test_model.pattern)
for test_case in test_model.test_cases:
matcher = SubgraphMatcher(pattern_traced.graph,
match_output=test_case.match_output,
match_placeholder=test_case.match_placeholder,
remove_overlapping_matches=test_case.remove_overlapping_matches)
matches = matcher.match(traced.graph)
assert len(matches) == test_case.num_matches
for match in matches:
for node in pattern_traced.graph.nodes:
if not test_case.match_placeholder and node.op == "placeholder":
continue
if not test_case.match_output and node.op == "output":
continue
assert node in match.nodes_map
tearDown = getattr(test_model, "tearDown", None)
if callable(setup):
tearDown()
if __name__ == "__main__":
run_tests()