Skip to content

Latest commit

 

History

History
74 lines (54 loc) · 949 Bytes

README.md

File metadata and controls

74 lines (54 loc) · 949 Bytes

Big O

A generalize way to categorize an algorithm time and space based on input.

  • Growth based on input
  • Drop constants
  • Consider the worst case

Big O complexity

  • O(1)
  • O(logn)
  • O(n)
  • O(nlogn)
  • O(n^2)
  • O(n!)

Examples

O(n)

function sumCharCodes(n) {
  let sum = 0;

  for (let i = 0; i < n.length; ++i) {
    sum += n.charCodeAt(i);
  }

  for (let i = 0; i < n.length; ++i) {
    sum += n.charCodeAt(i);
  }

  return sum;
}

O(n^2)

function sumCharCodes(n) {
  let sum = 0;

  for (let i = 0; i < n.length; ++i) {
    for (let j = 0; j < n.length; ++j) {
      sum += charCode;
    }
  }

  return sum;
}

O(n^3)

function sumCharCodes(n) {
  let sum = 0;

  for (let i = 0; i < n.length; ++i) {
    for (let j = 0; j < n.length; ++j) {
      for (let k = 0; k < n.length; ++k) {
        sum += charCode;
      }
    }
  }

  return sum;
}