forked from stanford-mast/nn_dataflow
-
Notifications
You must be signed in to change notification settings - Fork 1
/
setup.py
80 lines (65 loc) · 2.47 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
""" $lic$
Copyright (C) 2016-2017 by The Board of Trustees of Stanford University
This program is free software: you can redistribute it and/or modify it under
the terms of the Modified BSD-3 License as published by the Open Source
Initiative.
If you use this program in your research, we request that you reference the
TETRIS paper ("TETRIS: Scalable and Efficient Neural Network Acceleration with
3D Memory", in ASPLOS'17. April, 2017), and that you send us a citation of your
work.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the BSD-3 License for more details.
You should have received a copy of the Modified BSD-3 License along with this
program. If not, see <https://opensource.org/licenses/BSD-3-Clause>.
"""
import os
import re
import setuptools
PACKAGE = 'nn_dataflow'
DESC = 'Explore the energy-efficient dataflow scheduling for neural networks.'
def _get_version():
here = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(here, PACKAGE, '__init__.py'), 'r') as fh:
matches = re.findall(r'^\s*__version__\s*=\s*[\'"]([^\'"]+)[\'"]',
fh.read(), re.M)
if matches:
return matches[-1]
return '0.0.0'
def _readme():
here = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(here, 'README.rst'), 'r') as fh:
return fh.read()
setuptools.setup(
name=PACKAGE,
version=_get_version(),
description=DESC,
author='Mingyu Gao',
author_email='mgao12@stanford.edu',
long_description=_readme(),
url='https://github.com/stanford-mast/nn_dataflow',
license='BSD 3-clause',
packages=setuptools.find_packages(),
install_requires=[
'argparse',
'coverage>=4',
'pytest>=3',
'pytest-cov>=2',
'pytest-xdist>=1',
],
entry_points={
'console_scripts': [
'nn_dataflow_search=nn_dataflow.tools.nn_dataflow_search:main',
]
},
keywords='neural-network scheduling dataflow optimizer',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: BSD License',
'Programming Language :: Python :: 2.7',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: System :: Hardware',
],
)