diff --git a/shared/libebm/tests/boosting_unusual_inputs.cpp b/shared/libebm/tests/boosting_unusual_inputs.cpp index 82c1f9918..1773ef0c6 100644 --- a/shared/libebm/tests/boosting_unusual_inputs.cpp +++ b/shared/libebm/tests/boosting_unusual_inputs.cpp @@ -2063,8 +2063,10 @@ TEST_CASE("lossguide, boosting, regression") { TEST_CASE("stress test, boosting") { auto rng = MakeRng(0); - const IntEbm cTrainSamples = 200; - const IntEbm cValidationSamples = 100; + AccelerationFlags acceleration = AccelerationFlags_NONE; + + const IntEbm cTrainSamples = 211; // have some non-SIMD residuals + const IntEbm cValidationSamples = 101; // have some non-SIMD residuals const std::vector features = { FeatureTest(10, false, false, false), FeatureTest(10, false, false, true), @@ -2117,7 +2119,81 @@ TEST_CASE("stress test, boosting") { validation, innerBagCount, k_testCreateBoosterFlags_Default, - AccelerationFlags_NONE); + acceleration); + + double validationMetricIteration = 0.0; + for(size_t iRound = 0; iRound < cRounds; ++iRound) { + for(IntEbm iTerm = 0; iTerm < static_cast(terms.size()); ++iTerm) { + const IntEbm cRealBins = features[terms[iTerm][0]].CountRealBins(); + const IntEbm cDimensions = terms[iTerm].size(); + + const TermBoostFlags boostFlags = + static_cast(ChooseAny(rng, boostFlagsAny) | ChooseFrom(rng, boostFlagsChoose)); + + const double learningRate = 0.015625; + const IntEbm minSamplesLeaf = TestRand(rng, 5) + 1; + const double minHessian = 0 == TestRand(rng, 5) ? 0.015625 : 0.0; + const double regAlpha = 0 == TestRand(rng, 5) ? 0.015625 : 0.0; + const double regLambda = 0 == TestRand(rng, 5) ? 0.015625 : 0.0; + const double maxDeltaStep = 0 == TestRand(rng, 5) ? 1.0 : 0.0; + const double categoricalSmoothing = 10.0; + const IntEbm maxCategoricalThreshold = 1 + TestRand(rng, cRealBins + 1); + const double categoricalInclusionPercent = 0 == TestRand(rng, 2) ? 0.75 : 1.0; + + // we allow 1 cut more than the number of bins to test excessive leaves. + const IntEbm cLeaves = 1 + TestRand(rng, cRealBins + 1); + const std::vector leaves(cDimensions, cLeaves); + const MonotoneDirection direction = + 0 == TestRand(rng, 5) ? static_cast(TestRand(rng, 2) * 2 - 1) : 0; + const std::vector monotonicity(cDimensions, direction); + + validationMetricIteration = test.Boost(iTerm, + boostFlags, + learningRate, + minSamplesLeaf, + minHessian, + regAlpha, + regLambda, + maxDeltaStep, + categoricalSmoothing, + maxCategoricalThreshold, + categoricalInclusionPercent, + leaves, + monotonicity) + .validationMetric; + } + } + if(classesCount == 1) { + CHECK(std::numeric_limits::infinity() == validationMetricIteration); + } else { + validationMetric *= validationMetricIteration; + } + } + } + + const double expected = 26838942758406.215; + CHECK(validationMetric == expected); + + // Now redo the above, but using acceleration. Results will likely be slightly different but similar. + rng = MakeRng(0); + acceleration = AccelerationFlags_ALL; + validationMetric = 1.0; + + for(IntEbm classesCount = Task_Regression; classesCount < 5; ++classesCount) { + if(classesCount != Task_Regression && classesCount < 1) { + continue; + } + const auto train = MakeRandomDataset(rng, classesCount, cTrainSamples, features); + const auto validation = MakeRandomDataset(rng, classesCount, cValidationSamples, features); + for(IntEbm innerBagCount = 0; innerBagCount < 3; ++innerBagCount) { + TestBoost test = TestBoost(classesCount, + features, + terms, + train, + validation, + innerBagCount, + k_testCreateBoosterFlags_Default, + acceleration); double validationMetricIteration = 0.0; for(size_t iRound = 0; iRound < cRounds; ++iRound) { @@ -2169,5 +2245,5 @@ TEST_CASE("stress test, boosting") { } } - CHECK(validationMetric == 30885317143376.566); + CHECK_APPROX_TOLERANCE(validationMetric, expected, 1e-2); }