-
Notifications
You must be signed in to change notification settings - Fork 0
/
integral_ctx.bpo
15 lines (15 loc) · 2.27 KB
/
integral_ctx.bpo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<org.eventb.core.poFile org.eventb.core.poStamp="1">
<org.eventb.core.poPredicateSet name="ABSHYP" org.eventb.core.poStamp="0">
<org.eventb.core.poIdentifier name="integral" org.eventb.core.type="ℙ(ℙ(ℤ×ℤ)×ℤ)"/>
</org.eventb.core.poPredicateSet>
<org.eventb.core.poSequent name="f_integral/WD" org.eventb.core.accurate="true" org.eventb.core.poDesc="Well-definedness of Axiom" org.eventb.core.poStamp="1">
<org.eventb.core.poPredicateSet name="SEQHYP" org.eventb.core.parentSet="/ferryBoat/integral_ctx.bpo|org.eventb.core.poFile#integral_ctx|org.eventb.core.poPredicateSet#ABSHYP"/>
<org.eventb.core.poPredicate name="SEQHYQ" org.eventb.core.predicate="∀x⦂ℙ(ℤ×ℤ)·x∈ℤ ⇸ ℤ∧finite(x)∧card(x)>0∧finite(dom(x))⇒dom(x)≠(∅ ⦂ ℙ(ℤ))∧(∃b⦂ℤ·∀x0⦂ℤ·x0∈dom(x)⇒b≥x0)∧max(dom(x))∈dom(x)∧x ∖ {max(dom(x)) ↦ x(max(dom(x)))}∈dom(integral)∧integral∈ℙ(ℤ × ℤ) ⇸ ℤ" org.eventb.core.source="/ferryBoat/integral_ctx.buc|org.eventb.core.contextFile#integral_ctx|org.eventb.core.axiom#("/>
<org.eventb.core.poSource name="SEQHYR" org.eventb.core.poRole="DEFAULT" org.eventb.core.source="/ferryBoat/integral_ctx.buc|org.eventb.core.contextFile#integral_ctx|org.eventb.core.axiom#("/>
<org.eventb.core.poSelHint name="SEQHYS" org.eventb.core.poSelHintFst="/ferryBoat/integral_ctx.bpo|org.eventb.core.poFile#integral_ctx|org.eventb.core.poPredicateSet#ABSHYP" org.eventb.core.poSelHintSnd="/ferryBoat/integral_ctx.bpo|org.eventb.core.poFile#integral_ctx|org.eventb.core.poPredicateSet#ABSHYP"/>
</org.eventb.core.poSequent>
<org.eventb.core.poPredicateSet name="ALLHYP" org.eventb.core.parentSet="/ferryBoat/integral_ctx.bpo|org.eventb.core.poFile#integral_ctx|org.eventb.core.poPredicateSet#ABSHYP" org.eventb.core.poStamp="1">
<org.eventb.core.poPredicate name="PRD0" org.eventb.core.predicate="integral=(λx⦂ℙ(ℤ×ℤ)·x=(∅ ⦂ ℙ(ℤ×ℤ)) ∣ 0)∪(λx⦂ℙ(ℤ×ℤ)·x∈ℤ ⇸ ℤ∧finite(x)∧card(x)>0∧finite(dom(x)) ∣ integral(x ∖ {max(dom(x)) ↦ x(max(dom(x)))})+x(max(dom(x))))" org.eventb.core.source="/ferryBoat/integral_ctx.buc|org.eventb.core.contextFile#integral_ctx|org.eventb.core.axiom#("/>
</org.eventb.core.poPredicateSet>
</org.eventb.core.poFile>