This repository has been archived by the owner on Jun 27, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 53
/
hamt.go
918 lines (768 loc) · 23.2 KB
/
hamt.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
// Package hamt implements a Hash Array Mapped Trie over ipfs merkledag nodes.
// It is implemented mostly as described in the wikipedia article on HAMTs,
// however the table size is variable (usually 256 in our usages) as opposed to
// 32 as suggested in the article. The hash function used is currently
// Murmur3, but this value is configurable (the datastructure reports which
// hash function its using).
//
// The one algorithmic change we implement that is not mentioned in the
// wikipedia article is the collapsing of empty shards.
// Given the following tree: ( '[' = shards, '{' = values )
// [ 'A' ] -> [ 'B' ] -> { "ABC" }
// | L-> { "ABD" }
// L-> { "ASDF" }
// If we simply removed "ABC", we would end up with a tree where shard 'B' only
// has a single child. This causes two issues, the first, is that now we have
// an extra lookup required to get to "ABD". The second issue is that now we
// have a tree that contains only "ABD", but is not the same tree that we would
// get by simply inserting "ABD" into a new tree. To address this, we always
// check for empty shard nodes upon deletion and prune them to maintain a
// consistent tree, independent of insertion order.
package hamt
import (
"context"
"fmt"
"os"
"sync"
"golang.org/x/sync/errgroup"
format "github.com/ipfs/go-unixfs"
"github.com/ipfs/go-unixfs/internal"
bitfield "github.com/ipfs/go-bitfield"
cid "github.com/ipfs/go-cid"
ipld "github.com/ipfs/go-ipld-format"
dag "github.com/ipfs/go-merkledag"
)
const (
// HashMurmur3 is the multiformats identifier for Murmur3
HashMurmur3 uint64 = 0x22
)
func init() {
internal.HAMTHashFunction = murmur3Hash
}
func (ds *Shard) isValueNode() bool {
return ds.key != "" && ds.val != nil
}
// A Shard represents the HAMT. It should be initialized with NewShard().
type Shard struct {
childer *childer
// Entries per node (number of possible childs indexed by the partial key).
tableSize int
// Bits needed to encode child indexes (log2 of number of entries). This is
// the number of bits taken from the hash key on each level of the tree.
tableSizeLg2 int
builder cid.Builder
hashFunc uint64
// String format with number of zeros that will be present in the hexadecimal
// encoding of the child index to always reach the fixed maxpadlen chars.
// Example: maxpadlen = 4 => prefixPadStr: "%04X" (print number in hexadecimal
// format padding with zeros to always reach 4 characters).
prefixPadStr string
// Length in chars of string that encodes child indexes. We encode indexes
// as hexadecimal strings to this is log4 of number of entries.
maxpadlen int
dserv ipld.DAGService
// FIXME: Remove. We don't actually store "value nodes". This confusing
// abstraction just removes the maxpadlen from the link names to extract
// the actual value link the trie is storing.
// leaf node
key string
val *ipld.Link
}
// NewShard creates a new, empty HAMT shard with the given size.
func NewShard(dserv ipld.DAGService, size int) (*Shard, error) {
ds, err := makeShard(dserv, size)
if err != nil {
return nil, err
}
// FIXME: Make this at least a static configuration for testing.
ds.hashFunc = HashMurmur3
return ds, nil
}
func makeShard(ds ipld.DAGService, size int) (*Shard, error) {
lg2s, err := Logtwo(size)
if err != nil {
return nil, err
}
maxpadding := fmt.Sprintf("%X", size-1)
s := &Shard{
tableSizeLg2: lg2s,
prefixPadStr: fmt.Sprintf("%%0%dX", len(maxpadding)),
maxpadlen: len(maxpadding),
childer: newChilder(ds, size),
tableSize: size,
dserv: ds,
}
s.childer.sd = s
return s, nil
}
// NewHamtFromDag creates new a HAMT shard from the given DAG.
func NewHamtFromDag(dserv ipld.DAGService, nd ipld.Node) (*Shard, error) {
pbnd, ok := nd.(*dag.ProtoNode)
if !ok {
return nil, dag.ErrNotProtobuf
}
fsn, err := format.FSNodeFromBytes(pbnd.Data())
if err != nil {
return nil, err
}
if fsn.Type() != format.THAMTShard {
return nil, fmt.Errorf("node was not a dir shard")
}
if fsn.HashType() != HashMurmur3 {
return nil, fmt.Errorf("only murmur3 supported as hash function")
}
size := int(fsn.Fanout())
ds, err := makeShard(dserv, size)
if err != nil {
return nil, err
}
ds.childer.makeChilder(fsn.Data(), pbnd.Links())
ds.hashFunc = fsn.HashType()
ds.builder = pbnd.CidBuilder()
return ds, nil
}
// SetCidBuilder sets the CID Builder
func (ds *Shard) SetCidBuilder(builder cid.Builder) {
ds.builder = builder
}
// CidBuilder gets the CID Builder, may be nil if unset
func (ds *Shard) CidBuilder() cid.Builder {
return ds.builder
}
// Node serializes the HAMT structure into a merkledag node with unixfs formatting
func (ds *Shard) Node() (ipld.Node, error) {
out := new(dag.ProtoNode)
out.SetCidBuilder(ds.builder)
sliceIndex := 0
// TODO: optimized 'for each set bit'
for childIndex := 0; childIndex < ds.tableSize; childIndex++ {
if !ds.childer.has(childIndex) {
continue
}
ch := ds.childer.child(sliceIndex)
if ch != nil {
clnk, err := ch.Link()
if err != nil {
return nil, err
}
err = out.AddRawLink(ds.linkNamePrefix(childIndex)+ch.key, clnk)
if err != nil {
return nil, err
}
} else {
// child unloaded, just copy in link with updated name
lnk := ds.childer.link(sliceIndex)
label := lnk.Name[ds.maxpadlen:]
err := out.AddRawLink(ds.linkNamePrefix(childIndex)+label, lnk)
if err != nil {
return nil, err
}
}
sliceIndex++
}
data, err := format.HAMTShardData(ds.childer.bitfield.Bytes(), uint64(ds.tableSize), HashMurmur3)
if err != nil {
return nil, err
}
out.SetData(data)
err = ds.dserv.Add(context.TODO(), out)
if err != nil {
return nil, err
}
return out, nil
}
func (ds *Shard) makeShardValue(lnk *ipld.Link) (*Shard, error) {
lnk2 := *lnk
s, err := makeShard(ds.dserv, ds.tableSize)
if err != nil {
return nil, err
}
s.key = lnk.Name[ds.maxpadlen:]
s.val = &lnk2
return s, nil
}
// Set sets 'name' = nd in the HAMT
func (ds *Shard) Set(ctx context.Context, name string, nd ipld.Node) error {
_, err := ds.Swap(ctx, name, nd)
return err
}
// Set sets 'name' = nd in the HAMT, using directly the information in the
// given link. This avoids writing the given node, then reading it to making a
// link out of it.
func (ds *Shard) SetLink(ctx context.Context, name string, lnk *ipld.Link) error {
hv := newHashBits(name)
newLink := ipld.Link{
Name: lnk.Name,
Size: lnk.Size,
Cid: lnk.Cid,
}
// FIXME: We don't need to set the name here, it will get overwritten.
// This is confusing, confirm and remove this line.
newLink.Name = ds.linkNamePrefix(0) + name
_, err := ds.swapValue(ctx, hv, name, &newLink)
return err
}
// Swap sets a link pointing to the passed node as the value under the
// name key in this Shard or its children. It also returns the previous link
// under that name key (if any).
func (ds *Shard) Swap(ctx context.Context, name string, node ipld.Node) (*ipld.Link, error) {
hv := newHashBits(name)
err := ds.dserv.Add(ctx, node)
if err != nil {
return nil, err
}
lnk, err := ipld.MakeLink(node)
if err != nil {
return nil, err
}
// FIXME: We don't need to set the name here, it will get overwritten.
// This is confusing, confirm and remove this line.
lnk.Name = ds.linkNamePrefix(0) + name
return ds.swapValue(ctx, hv, name, lnk)
}
// Remove deletes the named entry if it exists. Otherwise, it returns
// os.ErrNotExist.
func (ds *Shard) Remove(ctx context.Context, name string) error {
_, err := ds.Take(ctx, name)
return err
}
// Take is similar to the public Remove but also returns the
// old removed link (if it exists).
func (ds *Shard) Take(ctx context.Context, name string) (*ipld.Link, error) {
hv := newHashBits(name)
return ds.swapValue(ctx, hv, name, nil)
}
// Find searches for a child node by 'name' within this hamt
func (ds *Shard) Find(ctx context.Context, name string) (*ipld.Link, error) {
hv := newHashBits(name)
var out *ipld.Link
err := ds.getValue(ctx, hv, name, func(sv *Shard) error {
out = sv.val
return nil
})
if err != nil {
return nil, err
}
return out, nil
}
type linkType int
const (
invalidLink linkType = iota
shardLink
shardValueLink
)
func (ds *Shard) childLinkType(lnk *ipld.Link) (linkType, error) {
if len(lnk.Name) < ds.maxpadlen {
return invalidLink, fmt.Errorf("invalid link name '%s'", lnk.Name)
}
if len(lnk.Name) == ds.maxpadlen {
return shardLink, nil
}
return shardValueLink, nil
}
// Link returns a merklelink to this shard node
func (ds *Shard) Link() (*ipld.Link, error) {
if ds.isValueNode() {
return ds.val, nil
}
nd, err := ds.Node()
if err != nil {
return nil, err
}
err = ds.dserv.Add(context.TODO(), nd)
if err != nil {
return nil, err
}
return ipld.MakeLink(nd)
}
func (ds *Shard) getValue(ctx context.Context, hv *hashBits, key string, cb func(*Shard) error) error {
childIndex, err := hv.Next(ds.tableSizeLg2)
if err != nil {
return err
}
if ds.childer.has(childIndex) {
child, err := ds.childer.get(ctx, ds.childer.sliceIndex(childIndex))
if err != nil {
return err
}
if child.isValueNode() {
if child.key == key {
return cb(child)
}
} else {
return child.getValue(ctx, hv, key, cb)
}
}
return os.ErrNotExist
}
// EnumLinks collects all links in the Shard.
func (ds *Shard) EnumLinks(ctx context.Context) ([]*ipld.Link, error) {
var links []*ipld.Link
linkResults := ds.EnumLinksAsync(ctx)
for linkResult := range linkResults {
if linkResult.Err != nil {
return links, linkResult.Err
}
links = append(links, linkResult.Link)
}
return links, nil
}
// ForEachLink walks the Shard and calls the given function.
func (ds *Shard) ForEachLink(ctx context.Context, f func(*ipld.Link) error) error {
return ds.walkTrie(ctx, func(sv *Shard) error {
lnk := sv.val
lnk.Name = sv.key
return f(lnk)
})
}
// EnumLinksAsync returns a channel which will receive Links in the directory
// as they are enumerated, where order is not guaranteed
func (ds *Shard) EnumLinksAsync(ctx context.Context) <-chan format.LinkResult {
linkResults := make(chan format.LinkResult)
ctx, cancel := context.WithCancel(ctx)
go func() {
defer close(linkResults)
defer cancel()
err := parallelShardWalk(ctx, ds, ds.dserv, func(formattedLink *ipld.Link) error {
emitResult(ctx, linkResults, format.LinkResult{Link: formattedLink, Err: nil})
return nil
})
if err != nil {
emitResult(ctx, linkResults, format.LinkResult{Link: nil, Err: err})
}
}()
return linkResults
}
type listCidsAndShards struct {
cids []cid.Cid
shards []*Shard
}
func (ds *Shard) walkChildren(processLinkValues func(formattedLink *ipld.Link) error) (*listCidsAndShards, error) {
res := &listCidsAndShards{}
for idx, lnk := range ds.childer.links {
if nextShard := ds.childer.children[idx]; nextShard == nil {
lnkLinkType, err := ds.childLinkType(lnk)
if err != nil {
return nil, err
}
switch lnkLinkType {
case shardValueLink:
sv, err := ds.makeShardValue(lnk)
if err != nil {
return nil, err
}
formattedLink := sv.val
formattedLink.Name = sv.key
if err := processLinkValues(formattedLink); err != nil {
return nil, err
}
case shardLink:
res.cids = append(res.cids, lnk.Cid)
default:
return nil, fmt.Errorf("unsupported shard link type")
}
} else {
if nextShard.val != nil {
formattedLink := &ipld.Link{
Name: nextShard.key,
Size: nextShard.val.Size,
Cid: nextShard.val.Cid,
}
if err := processLinkValues(formattedLink); err != nil {
return nil, err
}
} else {
res.shards = append(res.shards, nextShard)
}
}
}
return res, nil
}
// parallelShardWalk is quite similar to the DAG walking algorithm from https://github.com/ipfs/go-merkledag/blob/594e515f162e764183243b72c2ba84f743424c8c/merkledag.go#L464
// However, there are a few notable differences:
// 1. Some children are actualized Shard structs and some are in the blockstore, this will leverage walking over the in memory Shards as well as the stored blocks
// 2. Instead of just passing each child into the worker pool by itself we group them so that we can leverage optimizations from GetMany.
// This optimization also makes the walk a little more biased towards depth (as opposed to BFS) in the earlier part of the DAG.
// This is particularly helpful for operations like estimating the directory size which should complete quickly when possible.
// 3. None of the extra options from that package are needed
func parallelShardWalk(ctx context.Context, root *Shard, dserv ipld.DAGService, processShardValues func(formattedLink *ipld.Link) error) error {
const concurrency = 32
var visitlk sync.Mutex
visitSet := cid.NewSet()
visit := visitSet.Visit
// Setup synchronization
grp, errGrpCtx := errgroup.WithContext(ctx)
// Input and output queues for workers.
feed := make(chan *listCidsAndShards)
out := make(chan *listCidsAndShards)
done := make(chan struct{})
for i := 0; i < concurrency; i++ {
grp.Go(func() error {
for feedChildren := range feed {
for _, nextShard := range feedChildren.shards {
nextChildren, err := nextShard.walkChildren(processShardValues)
if err != nil {
return err
}
select {
case out <- nextChildren:
case <-errGrpCtx.Done():
return nil
}
}
var linksToVisit []cid.Cid
for _, nextCid := range feedChildren.cids {
var shouldVisit bool
visitlk.Lock()
shouldVisit = visit(nextCid)
visitlk.Unlock()
if shouldVisit {
linksToVisit = append(linksToVisit, nextCid)
}
}
chNodes := dserv.GetMany(errGrpCtx, linksToVisit)
for optNode := range chNodes {
if optNode.Err != nil {
return optNode.Err
}
nextShard, err := NewHamtFromDag(dserv, optNode.Node)
if err != nil {
return err
}
nextChildren, err := nextShard.walkChildren(processShardValues)
if err != nil {
return err
}
select {
case out <- nextChildren:
case <-errGrpCtx.Done():
return nil
}
}
select {
case done <- struct{}{}:
case <-errGrpCtx.Done():
}
}
return nil
})
}
send := feed
var todoQueue []*listCidsAndShards
var inProgress int
next := &listCidsAndShards{
shards: []*Shard{root},
}
dispatcherLoop:
for {
select {
case send <- next:
inProgress++
if len(todoQueue) > 0 {
next = todoQueue[0]
todoQueue = todoQueue[1:]
} else {
next = nil
send = nil
}
case <-done:
inProgress--
if inProgress == 0 && next == nil {
break dispatcherLoop
}
case nextNodes := <-out:
if next == nil {
next = nextNodes
send = feed
} else {
todoQueue = append(todoQueue, nextNodes)
}
case <-errGrpCtx.Done():
break dispatcherLoop
}
}
close(feed)
return grp.Wait()
}
func emitResult(ctx context.Context, linkResults chan<- format.LinkResult, r format.LinkResult) {
// make sure that context cancel is processed first
// the reason is due to the concurrency of EnumerateChildrenAsync
// it's possible for EnumLinksAsync to complete and close the linkResults
// channel before this code runs
select {
case <-ctx.Done():
return
default:
}
select {
case linkResults <- r:
case <-ctx.Done():
}
}
func (ds *Shard) walkTrie(ctx context.Context, cb func(*Shard) error) error {
return ds.childer.each(ctx, func(s *Shard) error {
if s.isValueNode() {
if err := cb(s); err != nil {
return err
}
} else {
if err := s.walkTrie(ctx, cb); err != nil {
return err
}
}
return nil
})
}
// swapValue sets the link `value` in the given key, either creating the entry
// if it didn't exist or overwriting the old one. It returns the old entry (if any).
func (ds *Shard) swapValue(ctx context.Context, hv *hashBits, key string, value *ipld.Link) (*ipld.Link, error) {
idx, err := hv.Next(ds.tableSizeLg2)
if err != nil {
return nil, err
}
if !ds.childer.has(idx) {
// Entry does not exist, create a new one.
return nil, ds.childer.insert(key, value, idx)
}
i := ds.childer.sliceIndex(idx)
child, err := ds.childer.get(ctx, i)
if err != nil {
return nil, err
}
if child.isValueNode() {
// Leaf node. This is the base case of this recursive function.
if child.key == key {
// We are in the correct shard (tree level) so we modify this child
// and return.
oldValue := child.val
if value == nil { // Remove old entry.
return oldValue, ds.childer.rm(idx)
}
child.val = value // Overwrite entry.
return oldValue, nil
}
if value == nil {
return nil, os.ErrNotExist
}
// We are in the same slot with another entry with a different key
// so we need to fork this leaf node into a shard with two childs:
// the old entry and the new one being inserted here.
// We don't overwrite anything here so we keep:
// `oldValue = nil`
// The child of this shard will now be a new shard. The old child value
// will be a child of this new shard (along with the new value being
// inserted).
grandChild := child
child, err = NewShard(ds.dserv, ds.tableSize)
if err != nil {
return nil, err
}
child.builder = ds.builder
chhv := newConsumedHashBits(grandChild.key, hv.consumed)
// We explicitly ignore the oldValue returned by the next two insertions
// (which will be nil) to highlight there is no overwrite here: they are
// done with different keys to a new (empty) shard. (At best this shard
// will create new ones until we find different slots for both.)
_, err = child.swapValue(ctx, hv, key, value)
if err != nil {
return nil, err
}
_, err = child.swapValue(ctx, chhv, grandChild.key, grandChild.val)
if err != nil {
return nil, err
}
// Replace this leaf node with the new Shard node.
ds.childer.set(child, i)
return nil, nil
} else {
// We are in a Shard (internal node). We will recursively call this
// function until finding the leaf (the logic of the `if` case above).
oldValue, err := child.swapValue(ctx, hv, key, value)
if err != nil {
return nil, err
}
if value == nil {
// We have removed an entry, check if we should remove shards
// as well.
switch child.childer.length() {
case 0:
// empty sub-shard, prune it
// Note: this shouldnt normally ever happen
// in the event of another implementation creates flawed
// structures, this will help to normalize them.
return oldValue, ds.childer.rm(idx)
case 1:
// The single child _should_ be a value by
// induction. However, we allow for it to be a
// shard in case an implementation is broken.
// Have we loaded the child? Prefer that.
schild := child.childer.child(0)
if schild != nil {
if schild.isValueNode() {
ds.childer.set(schild, i)
}
return oldValue, nil
}
// Otherwise, work with the link.
slnk := child.childer.link(0)
var lnkType linkType
lnkType, err = child.childer.sd.childLinkType(slnk)
if err != nil {
return nil, err
}
if lnkType == shardValueLink {
// sub-shard with a single value element, collapse it
ds.childer.setLink(slnk, i)
}
return oldValue, nil
}
}
return oldValue, nil
}
}
// linkNamePrefix takes in the bitfield index of an entry and returns its hex prefix
func (ds *Shard) linkNamePrefix(idx int) string {
return fmt.Sprintf(ds.prefixPadStr, idx)
}
// childer wraps the links, children and bitfield
// and provides basic operation (get, rm, insert and set) of manipulating children.
// The slices `links` and `children` are always coordinated to have the entries
// in the same index. A `childIndex` belonging to one of the original `Shard.size`
// entries corresponds to a `sliceIndex` in `links` and `children` (the conversion
// is done through `bitfield`).
type childer struct {
sd *Shard
dserv ipld.DAGService
bitfield bitfield.Bitfield
// Only one of links/children will be non-nil for every child/link.
links []*ipld.Link
children []*Shard
}
func newChilder(ds ipld.DAGService, size int) *childer {
return &childer{
dserv: ds,
bitfield: bitfield.NewBitfield(size),
}
}
func (s *childer) makeChilder(data []byte, links []*ipld.Link) *childer {
s.children = make([]*Shard, len(links))
s.bitfield.SetBytes(data)
if len(links) > 0 {
s.links = make([]*ipld.Link, len(links))
copy(s.links, links)
}
return s
}
// Return the `sliceIndex` associated with a child.
func (s *childer) sliceIndex(childIndex int) (sliceIndex int) {
return s.bitfield.OnesBefore(childIndex)
}
func (s *childer) child(sliceIndex int) *Shard {
return s.children[sliceIndex]
}
func (s *childer) link(sliceIndex int) *ipld.Link {
return s.links[sliceIndex]
}
func (s *childer) insert(key string, lnk *ipld.Link, idx int) error {
if lnk == nil {
return os.ErrNotExist
}
lnk.Name = s.sd.linkNamePrefix(idx) + key
i := s.sliceIndex(idx)
sd := &Shard{key: key, val: lnk}
s.children = append(s.children[:i], append([]*Shard{sd}, s.children[i:]...)...)
s.links = append(s.links[:i], append([]*ipld.Link{nil}, s.links[i:]...)...)
// Add a `nil` placeholder in `links` so the rest of the entries keep the same
// index as `children`.
s.bitfield.SetBit(idx)
return nil
}
func (s *childer) set(sd *Shard, i int) {
s.children[i] = sd
s.links[i] = nil
}
func (s *childer) setLink(lnk *ipld.Link, i int) {
s.children[i] = nil
s.links[i] = lnk
}
func (s *childer) rm(childIndex int) error {
i := s.sliceIndex(childIndex)
if err := s.check(i); err != nil {
return err
}
copy(s.children[i:], s.children[i+1:])
s.children = s.children[:len(s.children)-1]
copy(s.links[i:], s.links[i+1:])
s.links = s.links[:len(s.links)-1]
s.bitfield.UnsetBit(childIndex)
return nil
}
// get returns the i'th child of this shard. If it is cached in the
// children array, it will return it from there. Otherwise, it loads the child
// node from disk.
func (s *childer) get(ctx context.Context, sliceIndex int) (*Shard, error) {
if err := s.check(sliceIndex); err != nil {
return nil, err
}
c := s.child(sliceIndex)
if c != nil {
return c, nil
}
return s.loadChild(ctx, sliceIndex)
}
// loadChild reads the i'th child node of this shard from disk and returns it
// as a 'child' interface
func (s *childer) loadChild(ctx context.Context, sliceIndex int) (*Shard, error) {
lnk := s.link(sliceIndex)
lnkLinkType, err := s.sd.childLinkType(lnk)
if err != nil {
return nil, err
}
var c *Shard
if lnkLinkType == shardLink {
nd, err := lnk.GetNode(ctx, s.dserv)
if err != nil {
return nil, err
}
cds, err := NewHamtFromDag(s.dserv, nd)
if err != nil {
return nil, err
}
c = cds
} else {
s, err := s.sd.makeShardValue(lnk)
if err != nil {
return nil, err
}
c = s
}
s.set(c, sliceIndex)
return c, nil
}
func (s *childer) has(childIndex int) bool {
return s.bitfield.Bit(childIndex)
}
func (s *childer) length() int {
return len(s.children)
}
func (s *childer) each(ctx context.Context, cb func(*Shard) error) error {
for i := range s.children {
c, err := s.get(ctx, i)
if err != nil {
return err
}
if err := cb(c); err != nil {
return err
}
}
return nil
}
func (s *childer) check(sliceIndex int) error {
if sliceIndex >= len(s.children) || sliceIndex < 0 {
return fmt.Errorf("invalid index passed to operate children (likely corrupt bitfield)")
}
if len(s.children) != len(s.links) {
return fmt.Errorf("inconsistent lengths between children array and Links array")
}
return nil
}