-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw-template.tex
364 lines (283 loc) · 11.2 KB
/
hw-template.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
\documentclass[12pt]{article}
\usepackage{fancyhdr} % For the customized heading
\usepackage[english]{babel}
\usepackage[utf8x]{inputenc}
\usepackage[most]{tcolorbox}
\usepackage{multicol}
\usepackage{adjustbox}
\usepackage{amsmath,amsthm,amsfonts,amssymb} % For math symbols
\usepackage{extramarks}
\usepackage{graphicx} % For adding pictures
\usepackage{booktabs}
\usepackage{tabu}
\usepackage[T1]{fontenc}
\usepackage{enumitem}
\usepackage[parfill]{parskip}
\usepackage{changepage}
\usepackage{scrextend}
\usepackage{gauss}% http://ctan.org/pkg/gauss
\usepackage{hyperref}
\usepackage{mathtools}
\usepackage{calc}
\usepackage{scrextend}
\usepackage{systeme}
\usepackage{empheq}
%% Packages for APA bibliographies
\usepackage{apacite} % for the references page
\usepackage{url} % for hyperlinks in references
%% BASIC DOCUMENT SETTINGS %%
\graphicspath{ {./images/} }
\topmargin=-0.45in
\evensidemargin=0in
\oddsidemargin=0in
\textwidth=6.5in
\textheight=9.0in
\headsep=0.25in
\linespread{1.1}
\pagestyle{fancy}
\lhead{\hmwkAuthorName}
\chead{}
\rhead{\hmwkTitle}
\lfoot{\lastxmark}
\cfoot{\thepage}
\newcommand{\hmwkTitle}{\textbf{MATH 208: Take-Home Assignment}}
\newcommand{\hmwkDueDate}{January 17, 2019}
\newcommand{\hmwkClass}{\textbf{MATH 208 - Linear Algebra}}
\newcommand{\hmwkClassTime}{Section A}
\newcommand{\hmwkClassInstructor}{Dana Updegrove}
\newcommand{\hmwkAuthorName}{\textbf{Isabel Giang}}
\newcommand{\continueNextPage}{\begin{flushright}\textit{Continued on the next page...}
\end{flushright} \pagebreak}
\renewcommand\headrulewidth{0.4pt}
\renewcommand\footrulewidth{0.4pt}
\setlength\parindent{0pt}
%% TITLE PAGE SETTINGS %%
\title{
\vspace{2in}
\textmd{\textbf{\hmwkTitle}}\\
\large\vspace{0.1in}{\hmwkClass}\\
\large\vspace{0.1in}{\textbf{Date: }\hmwkDueDate}\\
\vspace{0.1in}{\textbf{Professor: }\hmwkClassInstructor}
\vspace{1in}
}
\author{\hmwkAuthorName}
\date{}
%% TODO:
%% MATH STRUCTURES AND SHORTCUTS %%
%% Solution environment
\newtcolorbox[auto counter]{solution}[1][]
{colframe=blue!20,
colback=white,
sharp corners,
title=Solution,
enhanced,
fontupper=\linespread{1.0}\selectfont,
coltitle=black,
fonttitle=\bfseries,
attach boxed title to top left={yshift*=-\tcboxedtitleheight/2, xshift=3mm},
boxed title style={sharp corners, colback=blue!20},
#1
}
%% Proof environment
\newtcolorbox[auto counter]{lin-proof}[2][]
{colframe=blue!20,
colback=white,
sharp corners,
title=Proof: #2,
enhanced,
coltitle=black,
fonttitle=\bfseries,
attach boxed title to top left={yshift*=-\tcboxedtitleheight/2, xshift=3mm},
boxed title style={sharp corners, colback=blue!20},
#1
}
%% Boxed answer environment
\newtcbox{\boxedeq}[1][]{%
nobeforeafter, math upper, tcbox raise base,
enhanced, colframe=black,
colback=white, boxrule=0.5pt,
#1}
%% Augmented matrix environment
\newenvironment{amatrix}[1]{
\left[\begin{array}{@{}*{#1}{c}|c@{}}
}{
\end{array}\right]
}
%% Vector notation
\renewcommand{\vec}[1]{\mathbf{#1}}
%% "Tombstone" QED for proofs
\renewcommand\qedsymbol{$\blacksquare$}
%% Linear transformation notation
\newcommand{\lintrans}{T: \mathbf{R^{m}} \rightarrow \mathbf{R^{n}}}
\begin{document}
\textbf{Problem 2, page 43}
The volume of traffic for a collection of intersections is show in the figure below. Find all possible values for $x_1, x_2, x_3$ and $x_4$. What is the minimum volume of traffic from $C$ to $D$?
\includegraphics[scale=0.35]{prob21-4}
\begin{solution}
The number of cars entering each intersection must equal the number of cars leaving. There are four intersections, so we can get the following system of equations:
\begin{align*}
70 + x_2 &= 85 + 40 + x_1 \label{A} \\
40 + 20 + 25 + x_3 &= 30 + x_2 \\
100 + x_1 &= 70 + x_4 \\
30 + x_4 &= x_3 + 60
\end{align*}
We can rewrite these equations into the standard form of a system of linear equations:
\begin{alignat*}{4}
-x_1 & {}+{} & x_2 & {}{} & {}{} & {}{} & {}={} & 55 \\
{}{} & {}{} & -x_2 & {}+{} & x_3 & {}{} & {}={} & -55 \\
x_1 & {}{} & {}{} & {}{} & {}{} & {}{} & -x_4 {}={} & -30 \\
{}{} & {}{} & {}{} & {}{} & x_3 & {}+{} & x_4 {}={} & 30
\end{alignat*}
which can be converted into an augmented matrix and converted to echelon form:
$$\begin{bmatrix} -1 & 1 & 0 & 0 & 55 \\
0 & -1 & 1 & 0 & -55\\
1 & 0 & 0 & -1 & -30 \\
0 & 0 & -1 & 1 & 30 \\
\end{bmatrix} \Rightarrow
\begin{bmatrix} -1 & 1 & 0 & 0 & 55 \\
0 & -1 & 1 & 0 & -55\\
0 & 0 & 1 & -1 & -30 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}$$
From this, we can get the following set of equations:
\begin{alignat*}{4}
-x_1 & {}+{} & x_2 & {}{} & {}{} & {}{} & {}={} & 55 \\
{}{} & {}{} & -x_2 & {}+{} & x_3 & {}{} & {}={} & -55 \\
{}{} & {}{} & {}{} & {}{} & x_3 & {}+{} & x_4 {}={} & 30
\end{alignat*}
Using back substitution and letting $x_4 = s_4$ as a free parameter, the set of solutions is: $$x_1 = s_4 - 30,000, \quad x_2 = s_4 + 25,000, \quad x_3 = s_4 - 30,000, \quad x_4 = s_4$$
Thus there are infinitely many possible distributions of cars for the four intersections.
It is not possible for a volume of cars to be negative, so $x_4 \geq 30,000.$ ~\\
The minimum volume of cars from $C$ to $D$ is \textbf{30,000 cars.}
\end{solution}
\pagebreak
\textbf{Problem 4, page 43}
The volume of traffic for a collection of intersections shown in the figure below. Find all possible values for $x_1, x_2, x_3, x_4, x_5$ and $x_6$.
\includegraphics[scale=0.35]{prob41-4}
\begin{solution}
There are six intersections, so we will have six equations to represent the volume of traffic:
\begin{align*}
x_2 + 50 &= 20 + 40 + x_2 \\
x_3 + x_4 + 20 &= x_2 + 45 \\
45 + 60 &= x_4 + x_5 + 35 \\
x_1 + 60 &= 80 \\
80 &= 70 + x_3 \\
x_5 + 70 &= x_6
\end{align*}
We can rewrite these equations into the standard form of a system of linear equations:
$$\sysdelim..\systeme{
-x_1 + x_2 = 10,
-x_2 + x_3 + x_4 = 25,
x_4 + x_5 = 70,
x_1 = 20,
x_3 = 10,
x_5 - x_6 = -70
}$$
which can be converted into an augmented matrix and converted to echelon form:
$$\begin{bmatrix} -1 & 1 & 0 & 0 & 0 & 0 & 55 \\
0 & -1 & 1 & 1 & 0 & 0 & -55\\
0 & 0 & 0 & 1 & 1 & 0 & 70 \\
1 & 0 & 0 & 0 & 0 & 0 & 20 \\
0 & 0 & 1 & 0 & 0 & 0 & 10 \\
0 & 0 & 0 & 0 & 1 & -1 & -70
\end{bmatrix} \Rightarrow
\begin{bmatrix} -1 & 1 & 0 & 0 & 0 & 0 & 10 \\
0 & -1 & 1 & 1 & 0 & 0 & 25\\
0 & 0 & 1 & 1 & 0 & 0 & 55 \\
0 & 0 & 0 & 1 & 1 & 0 & 70 \\
0 & 0 & 0 & 0 & 1 & 0 & 25 \\
0 & 0 & 0 & 0 & 0 & -1 & -95
\end{bmatrix} $$
From this, we can get the following set of equations:
$$\sysdelim..\systeme{
-x_1 + x_2 = 10,
-x_2 + x_3 + x_4 = 25,
x_3 + x_4 = 55,
x_4 + x_5 = 70,
x_5 = 25,
-x_6 = -95
}$$
Using back substitution, the set of solutions is: $$\mathbf{x_1 = 20, \quad x_2 = 30, \quad x_3 = 10, \quad x_4 = 45, \quad x_5 = 25, \quad x_6 = 95}$$
\end{solution}
Use Example 5 as a guide to find the subspace of values that balances the given chemical equation.
\textbf{Problem 74, page 160}
Methane burns in oxygen to form carbon dioxide and steam.
$$x_1CH_4 + x_2O_2 \rightarrow x_3CO_2 + x_4H_2O$$
\begin{solution}
In order to balance the chemical equation, we need to find values of $x_1$, $x_2$, $x_3$, $x_4$, such that the number of atoms for each element in the equation is the same for both sides.
We can create the linear system:
$$\sysdelim..\systeme{
-x_1 - x_3 = 0,
4x_1 -2x_4 = 0,
2x_2 - 2x_3 -x_4 = 0
}$$
This can be converted into the following augmented matrix, which can be reduced into echelon form:
$$\begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\
4 & 0 & 0 & -2 & 0 \\
1 & 2 & -2 & -1 & 0 \end{bmatrix} \Rightarrow
\begin{bmatrix} 1 & 0 & 0 & -\frac{1}{2} & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -\frac{1}{2} & 0 \end{bmatrix} $$
From this we can get the following set of solutions:
$$ x_1 = \frac{1}{2}s_4, \quad x_2 = s_4, \quad x_3 = \frac{1}{2}s_4,\quad x_4 = s_4$$ where $s_4$ is a free parameter.
We can use this to get a set of values that will satisfy the chemical equation. This is the subspace of values that balances the equation:
$$\text{span}\left\lbrace \begin{bmatrix} \frac{1}{2} \\ 1 \\ \frac{1}{2} \\ 1 \end{bmatrix} \right\rbrace $$
\end{solution}
\pagebreak
\textbf{Problem 76, page 160}
Ethyl alcohol reacts with oxygen to form vinegar and water.
$$x_1C_2H_5OH + x_2O_2 \rightarrow x_3HC_2H_3O_2 + x_4H_2O$$
\begin{solution}
In order to balance the chemical equation, we need to find values of $x_1$, $x_2$, $x_3$, $x_4$, such that the number of atoms for each element in the equation is the same for both sides.
We can create the linear system:
$$\sysdelim..\systeme{
2x_1 - 2x_3 = 0,
5x_1 - 4x_3 -2x_4 = 0,
x_1 + 2x_2 -2x_3 -x_4 = 0,
x_1 - x_3 = 0
}$$
This can be converted into the following augmented matrix, which can be reduced into echelon form:
$$\begin{bmatrix} 2 & 0 & -2 & 0 & 0 \\
5 & -4 & 0 & 0 & 0 \\
1 & 2 & -2 & -1 & 0 \\
1 & 0 & -1 & 0 & 0 \end{bmatrix} \Rightarrow
\begin{bmatrix} 1 & 0 & 0 & -\frac{2}{3} & 0 \\
0 & 1 & 0 & -\frac{5}{6} & 0 \\
0 & 0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0 & 0 \end{bmatrix} $$
From this we can get the following set of solutions:
$$ x_1 = \frac{2}{3}s_4, \quad x_2 = \frac{5}{6}s_4, \quad x_3 = \frac{2}{3}s_4,\quad x_4 = s_4$$ where $s_4$ is a free parameter.
We can use this to get a set of values that will satisfy the chemical equation. This is the subspace of values that balances the equation:
$$\text{span}\left\lbrace \begin{bmatrix} \frac{2}{3} \\ \\ \frac{5}{6} \\ \\ \frac{2}{3} \\ \\ 1 \end{bmatrix} \right\rbrace $$
\end{solution}
\pagebreak
\textbf{Problem 28, page 44}
Find the values of the coefficients $a$, $b$, and $c$ so the given conditions for the function $f$ and its derivatives are met.
$$f(x) = ae^{x} + be^{2x} + ce^{-3x}; f(0) = 2, f'(0) = 1,\text{ and } f''(0) = 19.$$
\begin{solution}
Compute the first and second derivatives of the function $f(x)$:
$$ f'(x) = ae^{x} + 2be^{2x} - 2ce^{-3x}$$
$$ f''(x) = ae^{x} + 4be^{2x} + 9ce^{-3x} $$
Plug in $x = 0$ to cancel out the $e^{x}$ terms since $e^{0} = 1$:
\begin{align*}
f(0) &= a + b + c \\
f'(0) &= a + 2b - 3c \\
f''(0) &= a + 4b + 9c
\end{align*}
Set these equations equal to the given initial conditions to form a system of equations:
\begin{align*}
a + b + c &= 2 \\
a + 2b - 3c &= 1 \\
a + 4b + 9c &= 19
\end{align*}
This can be converted to the following augmented matrix, which can be reduced to echelon form:
$$ \begin{bmatrix} 1 & 1 & 1 & 2\\
1 & 2 & -3 & 1\\
1 & 4 & 9 & 19 \end{bmatrix} \Rightarrow
\begin{bmatrix} 1 & 0 & 0 & -2\\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 1 \end{bmatrix}$$
From this we can obtain values for the coefficents of the equation:
$$a = -2, \quad b = 3, \quad c = 1 $$
\end{solution}
\end{document}