-
Notifications
You must be signed in to change notification settings - Fork 225
/
rsatool.py
executable file
·223 lines (172 loc) · 6.15 KB
/
rsatool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/env python3
import base64
import argparse
import random
import sys
import textwrap
import gmpy2
from pyasn1.codec.der import encoder
from pyasn1.type.univ import Sequence, Integer
PEM_TEMPLATE = (
'-----BEGIN RSA PRIVATE KEY-----\n'
'%s\n'
'-----END RSA PRIVATE KEY-----\n'
)
DEFAULT_EXP = 65537
def factor_modulus(n, d, e):
"""
Efficiently recover non-trivial factors of n
See: Handbook of Applied Cryptography
8.2.2 Security of RSA -> (i) Relation to factoring (p.287)
http://www.cacr.math.uwaterloo.ca/hac/
"""
t = e * d - 1
s = 0
if 17 != gmpy2.powmod(17, e * d, n):
raise ValueError("n, d, e don't match")
while True:
quotient, remainder = divmod(t, 2)
if remainder != 0:
break
s += 1
t = quotient
found = False
tries = 0
while not found:
tries += 1
if tries >= 1000:
raise ValueError("Factorization/d: no success after 1000 tries")
i = 1
a = random.randint(1, n - 1)
while i <= s and not found:
c1 = pow(a, pow(2, i - 1, n) * t, n)
c2 = pow(a, pow(2, i, n) * t, n)
found = c1 != 1 and c1 != (-1 % n) and c2 == 1
i += 1
p = gmpy2.gcd(c1 - 1, n)
q = n // p
return p, q
def factor_dp(n, dp, e):
# algorithm from https://eprint.iacr.org/2020/1506.pdf page 9
p = 1
v = 2
while p == 1:
a = gmpy2.mpz(v)
t = gmpy2.powmod(a, e * dp - 1, n) - 1
p = gmpy2.gcd(t, n)
v += 1
if v > 100:
raise ValueError("Factorization/dp: no success after 100 tries")
q = n // p
if p * q != n:
raise ValueError("Factorization with dp failed")
return p, q
class RSA:
def __init__(self, p=None, q=None, n=None, d=None, dp=None, e=DEFAULT_EXP):
"""
Initialize RSA instance using primes (p, q)
or modulus and private exponent (n, d)
"""
self.e = e
if p and q:
assert gmpy2.is_prime(p), 'p is not prime'
assert gmpy2.is_prime(q), 'q is not prime'
self.p = p
self.q = q
elif n and d:
self.p, self.q = factor_modulus(n, d, e)
elif n and dp:
self.p, self.q = factor_dp(n, dp, e)
else:
raise ValueError('Either (p, q) or (n, d) must be provided')
self._calc_values()
def _calc_values(self):
self.n = self.p * self.q
if self.p != self.q:
phi = (self.p - 1) * (self.q - 1)
else:
phi = (self.p ** 2) - self.p
self.d = gmpy2.invert(self.e, phi)
# CRT-RSA precomputation
self.dP = self.d % (self.p - 1)
self.dQ = self.d % (self.q - 1)
self.qInv = gmpy2.invert(self.q, self.p)
def to_pem(self):
"""
Return OpenSSL-compatible PEM encoded key
"""
b64 = base64.b64encode(self.to_der()).decode()
b64w = "\n".join(textwrap.wrap(b64, 64))
return (PEM_TEMPLATE % b64w).encode()
def to_der(self):
"""
Return parameters as OpenSSL compatible DER encoded key
"""
seq = Sequence()
for idx, x in enumerate(
[0, self.n, self.e, self.d, self.p, self.q, self.dP, self.dQ, self.qInv]
):
seq.setComponentByPosition(idx, Integer(x))
return encoder.encode(seq)
def dump(self, verbose):
vars = ['n', 'e', 'd', 'p', 'q']
if verbose:
vars += ['dP', 'dQ', 'qInv']
for v in vars:
self._dumpvar(v)
def _dumpvar(self, var):
val = getattr(self, var)
def parts(s, n):
return '\n'.join([s[i:i + n] for i in range(0, len(s), n)])
if len(str(val)) <= 40:
print('%s = %d (%#x)\n' % (var, val, val))
else:
print('%s =' % var)
print(parts('%x' % val, 80) + '\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-n', type=lambda x: int(x, 0),
help='modulus. format : int or 0xhex')
parser.add_argument('-p', type=lambda x: int(x, 0),
help='first prime number. format : int or 0xhex')
parser.add_argument('-q', type=lambda x: int(x, 0),
help='second prime number. format : int or 0xhex')
parser.add_argument('-d', type=lambda x: int(x, 0),
help='private exponent. format : int or 0xhex')
parser.add_argument('-e', type=lambda x: int(x, 0),
help='public exponent (default: %d). format : int or 0xhex' %
DEFAULT_EXP, default=DEFAULT_EXP)
parser.add_argument('--dp', type=lambda x: int(x, 0),
help='d (mod p-1) or d (mod q-1) : int or 0xhex')
parser.add_argument('-o', '--output', help='output filename')
parser.add_argument('-f', '--format', choices=['DER', 'PEM'], default='PEM',
help='output format (DER, PEM) (default: PEM)')
parser.add_argument('-v', '--verbose', action='store_true', default=False,
help='also display CRT-RSA representation')
args = parser.parse_args()
if args.p and args.q:
print('Using (p, q) to calculate RSA paramaters\n')
rsa = RSA(p=args.p, q=args.q, e=args.e)
elif args.n and args.d:
print('Using (n, d) to calculate RSA parameters\n')
rsa = RSA(n=args.n, d=args.d, e=args.e)
elif args.n and args.dp:
print('Using (n, dp) to calculate RSA parameters\n')
rsa = RSA(n=args.n, dp=args.dp, e=args.e)
else:
parser.print_help()
parser.error('Either (p, q), (n, d) or (n, dp) needs to be specified')
if args.format == 'DER' and not args.output:
parser.error('Output filename (-o) required for DER output')
rsa.dump(args.verbose)
if args.format == 'PEM':
data = rsa.to_pem()
elif args.format == 'DER':
data = rsa.to_der()
if args.output:
print('Saving %s as %s' % (args.format, args.output))
fp = open(args.output, 'wb')
fp.write(data)
fp.close()
else:
sys.stdout.buffer.write(data)