-
Notifications
You must be signed in to change notification settings - Fork 2
/
plotting.py
273 lines (230 loc) · 12.4 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python
# Official implementation code for "Lung Nodule Detection and Classification from Thorax CT-Scan Using RetinaNet with Transfer Learning" and "Lung Nodule Texture Detection and Classification Using 3D CNN."
# Adapted from of [medicaldetectiontoolkit](https://github.com/pfjaeger/medicaldetectiontoolkit) and [kinetics_i3d_pytorch](https://github.com/hassony2/kinetics_i3d_pytorch)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
import os
from copy import deepcopy
def plot_batch_prediction(batch, results_dict, cf, outfile= None):
"""
plot the input images, ground truth annotations, and output predictions of a batch. If 3D batch, plots a 2D projection
of one randomly sampled element (patient) in the batch. Since plotting all slices of patient volume blows up costs of
time and space, only a section containing a randomly sampled ground truth annotation is plotted.
:param batch: dict with keys: 'data' (input image), 'seg' (pixelwise annotations), 'pid'
:param results_dict: list over batch element. Each element is a list of boxes (prediction and ground truth),
where every box is a dictionary containing box_coords, box_score and box_type.
"""
if outfile is None:
outfile = os.path.join(cf.plot_dir, 'pred_example_{}.png'.format(cf.fold))
data = batch['data']
segs = batch['seg']
pids = batch['pid']
# for 3D, repeat pid over batch elements.
if len(set(pids)) == 1:
pids = [pids] * data.shape[0]
seg_preds = results_dict['seg_preds']
roi_results = deepcopy(results_dict['boxes'])
# Randomly sampled one patient of batch and project data into 2D slices for plotting.
if cf.dim == 3:
patient_ix = np.random.choice(data.shape[0])
data = np.transpose(data[patient_ix], axes=(3, 0, 1, 2))
# select interesting foreground section to plot.
gt_boxes = [box['box_coords'] for box in roi_results[patient_ix] if box['box_type'] == 'gt']
if len(gt_boxes) > 0:
z_cuts = [np.max((int(gt_boxes[0][4]) - 5, 0)), np.min((int(gt_boxes[0][5]) + 5, data.shape[0]))]
else:
z_cuts = [data.shape[0]//2 - 5, int(data.shape[0]//2 + np.min([10, data.shape[0]//2]))]
p_roi_results = roi_results[patient_ix]
roi_results = [[] for _ in range(data.shape[0])]
# iterate over cubes and spread across slices.
for box in p_roi_results:
b = box['box_coords']
# dismiss negative anchor slices.
slices = np.round(np.unique(np.clip(np.arange(b[4], b[5] + 1), 0, data.shape[0]-1)))
for s in slices:
roi_results[int(s)].append(box)
roi_results[int(s)][-1]['box_coords'] = b[:4]
roi_results = roi_results[z_cuts[0]: z_cuts[1]]
data = data[z_cuts[0]: z_cuts[1]]
segs = np.transpose(segs[patient_ix], axes=(3, 0, 1, 2))[z_cuts[0]: z_cuts[1]]
seg_preds = np.transpose(seg_preds[patient_ix], axes=(3, 0, 1, 2))[z_cuts[0]: z_cuts[1]]
pids = [pids[patient_ix]] * data.shape[0]
try:
# all dimensions except for the 'channel-dimension' are required to match
for i in [0, 2, 3]:
assert data.shape[i] == segs.shape[i] == seg_preds.shape[i]
except:
raise Warning('Shapes of arrays to plot not in agreement!'
'Shapes {} vs. {} vs {}'.format(data.shape, segs.shape, seg_preds.shape))
show_arrays = np.concatenate([data, segs, seg_preds, data[:, 0][:, None]], axis=1).astype(float)
approx_figshape = (4 * show_arrays.shape[0], 4 * show_arrays.shape[1])
fig = plt.figure(figsize=approx_figshape)
gs = gridspec.GridSpec(show_arrays.shape[1] + 1, show_arrays.shape[0])
gs.update(wspace=0.1, hspace=0.1)
for b in range(show_arrays.shape[0]):
for m in range(show_arrays.shape[1]):
ax = plt.subplot(gs[m, b])
ax.axis('off')
if m < show_arrays.shape[1]:
arr = show_arrays[b, m]
if m < data.shape[1] or m == show_arrays.shape[1] - 1:
cmap = 'gray'
vmin = None
vmax = None
else:
cmap = None
vmin = 0
vmax = cf.num_seg_classes - 1
if m == 0:
plt.title('{}'.format(pids[b][:10]), fontsize=20)
plt.imshow(arr, cmap=cmap, vmin=vmin, vmax=vmax)
if m >= (data.shape[1]):
for box in roi_results[b]:
if box['box_type'] != 'patient_tn_box': # don't plot true negative dummy boxes.
coords = box['box_coords']
if box['box_type'] == 'det':
# dont plot background preds or low confidence boxes.
if box['box_pred_class_id'] > 0 and box['box_score'] > 0.1:
plot_text = True
score = np.max(box['box_score'])
score_text = '{}|{:.0f}'.format(box['box_pred_class_id'], score*100)
# if prob detection: plot only boxes from correct sampling instance.
if 'sample_id' in box.keys() and int(box['sample_id']) != m - data.shape[1] - 2:
continue
# if prob detection: plot reconstructed boxes only in corresponding line.
if not 'sample_id' in box.keys() and m != data.shape[1] + 1:
continue
score_font_size = 7
text_color = 'w'
text_x = coords[1] + 10*(box['box_pred_class_id'] -1) #avoid overlap of scores in plot.
text_y = coords[2] + 5
else:
continue
elif box['box_type'] == 'gt':
plot_text = True
score_text = int(box['box_label'])
score_font_size = 7
text_color = 'r'
text_x = coords[1]
text_y = coords[0] - 1
else:
plot_text = False
color_var = 'extra_usage' if 'extra_usage' in list(box.keys()) else 'box_type'
color = cf.box_color_palette[box[color_var]]
plt.plot([coords[1], coords[3]], [coords[0], coords[0]], color=color, linewidth=1, alpha=1) # up
plt.plot([coords[1], coords[3]], [coords[2], coords[2]], color=color, linewidth=1, alpha=1) # down
plt.plot([coords[1], coords[1]], [coords[0], coords[2]], color=color, linewidth=1, alpha=1) # left
plt.plot([coords[3], coords[3]], [coords[0], coords[2]], color=color, linewidth=1, alpha=1) # right
if plot_text:
plt.text(text_x, text_y, score_text, fontsize=score_font_size, color=text_color)
try:
plt.savefig(outfile)
except:
raise Warning('failed to save plot.')
plt.close(fig)
class TrainingPlot_2Panel():
def __init__(self, cf):
self.file_name = cf.plot_dir + '/monitor_{}'.format(cf.fold)
self.exp_name = cf.fold_dir
self.do_validation = cf.do_validation
self.separate_values_dict = cf.assign_values_to_extra_figure
self.figure_list = []
for n in range(cf.n_monitoring_figures):
self.figure_list.append(plt.figure(figsize=(10, 6)))
self.figure_list[-1].ax1 = plt.subplot(111)
self.figure_list[-1].ax1.set_xlabel('epochs')
self.figure_list[-1].ax1.set_ylabel('loss / metrics')
self.figure_list[-1].ax1.set_xlim(0, cf.num_epochs)
self.figure_list[-1].ax1.grid()
self.figure_list[0].ax1.set_ylim(0, 1.5)
self.color_palette = ['b', 'c', 'r', 'purple', 'm', 'y', 'k', 'tab:gray']
def update_and_save(self, metrics, epoch):
for figure_ix in range(len(self.figure_list)):
fig = self.figure_list[figure_ix]
detection_monitoring_plot(fig.ax1, metrics, self.exp_name, self.color_palette, epoch, figure_ix,
self.separate_values_dict,
self.do_validation)
fig.savefig(self.file_name + '_{}'.format(figure_ix))
def detection_monitoring_plot(ax1, metrics, exp_name, color_palette, epoch, figure_ix, separate_values_dict, do_validation):
monitor_values_keys = metrics['train']['monitor_values'][1][0].keys()
separate_values = [v for fig_ix in separate_values_dict.values() for v in fig_ix]
if figure_ix == 0:
plot_keys = [ii for ii in monitor_values_keys if ii not in separate_values]
plot_keys += [k for k in metrics['train'].keys() if k != 'monitor_values']
else:
plot_keys = separate_values_dict[figure_ix]
x = np.arange(1, epoch + 1)
for kix, pk in enumerate(plot_keys):
if pk in metrics['train'].keys():
y_train = metrics['train'][pk][1:]
if do_validation:
y_val = metrics['val'][pk][1:]
else:
y_train = [np.mean([er[pk] for er in metrics['train']['monitor_values'][e]]) for e in x]
if do_validation:
y_val = [np.mean([er[pk] for er in metrics['val']['monitor_values'][e]]) for e in x]
ax1.plot(x, y_train, label='train_{}'.format(pk), linestyle='--', color=color_palette[kix])
if do_validation:
ax1.plot(x, y_val, label='val_{}'.format(pk), linestyle='-', color=color_palette[kix])
if epoch == 1:
box = ax1.get_position()
ax1.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax1.legend(loc='center left', bbox_to_anchor=(1, 0.5))
ax1.set_title(exp_name)
def plot_prediction_hist(label_list, pred_list, type_list, outfile):
"""
plot histogram of predictions for a specific class.
:param label_list: list of 1s and 0s specifying whether prediction is a true positive match (1) or a false positive (0).
False negatives (missed ground truth objects) are artificially added predictions with score 0 and label 1.
:param pred_list: list of prediction-scores.
:param type_list: list of prediction-types for stastic-info in title.
"""
preds = np.array(pred_list)
labels = np.array(label_list)
title = outfile.split('/')[-1] + ' count:{}'.format(len(label_list))
plt.figure()
plt.yscale('log')
if 0 in labels:
plt.hist(preds[labels == 0], alpha=0.3, color='g', range=(0, 1), bins=50, label='false pos.')
if 1 in labels:
plt.hist(preds[labels == 1], alpha=0.3, color='b', range=(0, 1), bins=50, label='true pos. (false neg. @ score=0)')
if type_list is not None:
fp_count = type_list.count('det_fp')
fn_count = type_list.count('det_fn')
tp_count = type_list.count('det_tp')
pos_count = fn_count + tp_count
title += ' tp:{} fp:{} fn:{} pos:{}'. format(tp_count, fp_count, fn_count, pos_count)
plt.legend()
plt.title(title)
plt.xlabel('confidence score')
plt.ylabel('log n')
plt.savefig(outfile)
plt.close()
def plot_stat_curves(stats, outfile):
for c in ['roc', 'prc']:
plt.figure()
for s in stats:
if s[c] is not None:
plt.plot(s[c][0], s[c][1], label=s['name'] + '_' + c)
plt.title(outfile.split('/')[-1] + '_' + c)
plt.legend(loc=3 if c == 'prc' else 4)
plt.xlabel('precision' if c == 'prc' else '1-spec.')
plt.ylabel('recall')
plt.savefig(outfile + '_' + c)
plt.close()