forked from eti-p-doray/unet-gan-matting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
138 lines (105 loc) · 4.51 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/python3
import argparse
import os
import random
import logging
import cv2
import math
import tensorflow as tf
import numpy as np
from PIL import Image
from unet import UNet, Discriminator
from scripts.image_manips import resize
model_name = "matting"
logging.basicConfig(level=logging.INFO)
def image_fill(img, size, value):
border = [math.ceil((size[0] - img.shape[0])/2),
math.floor((size[0] - img.shape[0])/2),
math.ceil((size[1] - img.shape[1])/2),
math.floor((size[1] - img.shape[1])/2)]
return cv2.copyMakeBorder(img,border[0],border[1],border[2],border[3],cv2.BORDER_CONSTANT,value=value)
def load_image(image_file):
size = [960/2, 720/2]
image = cv2.imread(image_file, cv2.IMREAD_COLOR)
ratio = np.amin(np.divide(size, image.shape[0:2]))
image_size = np.floor(np.multiply(image.shape[0:2], ratio)).astype(int)
image = cv2.resize(image, (image_size[1], image_size[0]))
image = image_fill(image,size,[0,0,0,0])
image = image.astype(float)
return image
def generate_trimap(object_file):
size = [960/2, 720/2]
foreground = cv2.imread(object_file, cv2.IMREAD_UNCHANGED)
if foreground is None:
return False
print(foreground.shape)
alpha = cv2.split(foreground)[3]
ratio = np.amin(np.divide(size, alpha.shape[0:2]))
forground_size = np.floor(np.multiply(alpha.shape[0:2], ratio)).astype(int)
alpha = cv2.resize(alpha, (forground_size[1], forground_size[0]))
alpha = image_fill(alpha,size,[0,0,0,0])
alpha = alpha.astype(float)
cv2.normalize(alpha, alpha, 0.0, 1.0, cv2.NORM_MINMAX)
_, inner_map = cv2.threshold(alpha, 0.9, 255, cv2.THRESH_BINARY)
_, outer_map = cv2.threshold(alpha, 0.1, 255, cv2.THRESH_BINARY)
inner_map = cv2.erode(inner_map, np.ones((5,5),np.uint8), iterations = 3)
outer_map = cv2.dilate(outer_map, np.ones((5,5),np.uint8), iterations = 3)
return inner_map + (outer_map - inner_map) /2
# Parse Arguments
def parse_args():
parser = argparse.ArgumentParser(description="Evalutate image")
parser.add_argument("input", type=str,
help="Path to a file containing input image")
parser.add_argument("object", type=str,
help="Path to a file containing trimap image")
parser.add_argument("output", type=str,
help="Path to the output file")
parser.add_argument('--checkpoint', type=int, default=None,
help='Saved session checkpoint, -1 for latest.')
parser.add_argument('--logdir', default="log/" + model_name,
help='Directory where logs should be written.')
return parser.parse_args()
def apply_trimap(images, output, alpha):
masked_output = []
for channel in range(4):
masked_output.append(output[:,:,:,channel])
masked_output[channel] = tf.where(alpha < 0.25, images[:,:,:,channel], masked_output[channel])
masked_output[channel] = tf.where(alpha > 0.75, images[:,:,:,channel], masked_output[channel])
masked_output[channel] = masked_output[channel]
masked_output = tf.stack(masked_output, 3)
return masked_output
def main(args):
input_images = tf.placeholder(tf.float32, shape=[1, 480, 360, 4])
with tf.variable_scope("Gen"):
gen = UNet(4,4)
output = tf.sigmoid(gen(input_images))
global_step = tf.get_variable('global_step', initializer=0, trainable=False)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
saver = tf.train.Saver()
if args.checkpoint is not None and os.path.exists(os.path.join(args.logdir, 'checkpoint')):
if args.checkpoint == -1:#latest checkpoint
saver.restore(sess, tf.train.latest_checkpoint(args.logdir))
else:#Specified checkpoint
saver.restore(sess, os.path.join(args.logdir, model_name+".ckpt-"+str(args.checkpoint)))
logging.info('Model restored to step ' + str(global_step.eval(sess)))
images, targets = [], []
input_filename = args.input
image = load_image(input_filename)
print(image.shape)
trimap = generate_trimap(args.object)
image = np.array(image)
trimap = np.array(trimap)[..., np.newaxis]
print(image.shape)
print(trimap.shape)
image = np.concatenate((image, trimap), axis = 2).astype(np.float32) / 255
result = sess.run(output, feed_dict={
input_images: np.asarray([image]),
})
print(result.shape)
image = Image.fromarray((result[0,:,:,:]*255).astype(np.uint8))
image.save(args.output)
if __name__ == '__main__':
args = parse_args()
main(args)