-
Notifications
You must be signed in to change notification settings - Fork 31
/
test.py
155 lines (128 loc) · 5.28 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
import os
import math
from functools import partial
import yaml
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import datasets
import models
import utils
def batched_predict(model, inp, coord, cell, bsize):
with torch.no_grad():
model.gen_feat(inp)
n = coord.shape[1]
ql = 0
preds = []
while ql < n:
qr = min(ql + bsize, n)
pred = model.query_rgb(coord[:, ql: qr, :], cell[:, ql: qr, :])
preds.append(pred)
ql = qr
pred = torch.cat(preds, dim=1)
return pred
def eval_psnr(loader, model, data_norm=None, eval_type=None, eval_bsize=None, window_size=0, scale_max=4, fast=False,
verbose=False):
model.eval()
if data_norm is None:
data_norm = {
'inp': {'sub': [0], 'div': [1]},
'gt': {'sub': [0], 'div': [1]}
}
t = data_norm['inp']
inp_sub = torch.FloatTensor(t['sub']).view(1, -1, 1, 1).cuda()
inp_div = torch.FloatTensor(t['div']).view(1, -1, 1, 1).cuda()
t = data_norm['gt']
gt_sub = torch.FloatTensor(t['sub']).view(1, 1, -1).cuda()
gt_div = torch.FloatTensor(t['div']).view(1, 1, -1).cuda()
if eval_type is None:
metric_fn = utils.calc_psnr
elif eval_type.startswith('div2k'):
scale = int(eval_type.split('-')[1])
metric_fn = partial(utils.calc_psnr, dataset='div2k', scale=scale)
elif eval_type.startswith('benchmark'):
scale = int(eval_type.split('-')[1])
metric_fn = partial(utils.calc_psnr, dataset='benchmark', scale=scale)
else:
raise NotImplementedError
val_res = utils.Averager()
pbar = tqdm(loader, leave=False, desc='val')
for batch in pbar:
for k, v in batch.items():
batch[k] = v.cuda()
inp = (batch['inp'] - inp_sub) / inp_div
# SwinIR Evaluation - reflection padding
if window_size != 0:
_, _, h_old, w_old = inp.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
inp = torch.cat([inp, torch.flip(inp, [2])], 2)[:, :, :h_old + h_pad, :]
inp = torch.cat([inp, torch.flip(inp, [3])], 3)[:, :, :, :w_old + w_pad]
coord = utils.make_coord((scale*(h_old+h_pad), scale*(w_old+w_pad))).unsqueeze(0).cuda()
cell = torch.ones_like(coord)
cell[:, :, 0] *= 2 / inp.shape[-2] / scale
cell[:, :, 1] *= 2 / inp.shape[-1] / scale
else:
h_pad = 0
w_pad = 0
coord = batch['coord']
cell = batch['cell']
if eval_bsize is None:
with torch.no_grad():
pred = model(inp, coord, cell)
else:
if fast:
pred = model(inp, coord, cell*max(scale/scale_max, 1))
else:
pred = batched_predict(model, inp, coord, cell*max(scale/scale_max, 1), eval_bsize) # cell clip for extrapolation
pred = pred * gt_div + gt_sub
pred.clamp_(0, 1)
if eval_type is not None and fast == False: # reshape for shaving-eval
# gt reshape
ih, iw = batch['inp'].shape[-2:]
s = math.sqrt(batch['coord'].shape[1] / (ih * iw))
shape = [batch['inp'].shape[0], round(ih * s), round(iw * s), 3]
batch['gt'] = batch['gt'].view(*shape) \
.permute(0, 3, 1, 2).contiguous()
# prediction reshape
ih += h_pad
iw += w_pad
s = math.sqrt(coord.shape[1] / (ih * iw))
shape = [batch['inp'].shape[0], round(ih * s), round(iw * s), 3]
pred = pred.view(*shape) \
.permute(0, 3, 1, 2).contiguous()
pred = pred[..., :batch['gt'].shape[-2], :batch['gt'].shape[-1]]
res = metric_fn(pred, batch['gt'])
val_res.add(res.item(), inp.shape[0])
if verbose:
pbar.set_description('val {:.4f}'.format(val_res.item()))
return val_res.item()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config')
parser.add_argument('--model')
parser.add_argument('--window', default='0')
parser.add_argument('--scale_max', default='4')
parser.add_argument('--fast', default=False)
parser.add_argument('--gpu', default='0')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
with open(args.config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
spec = config['test_dataset']
dataset = datasets.make(spec['dataset'])
dataset = datasets.make(spec['wrapper'], args={'dataset': dataset})
loader = DataLoader(dataset, batch_size=spec['batch_size'],
num_workers=8, pin_memory=True)
model_spec = torch.load(args.model)['model']
model = models.make(model_spec, load_sd=True).cuda()
res = eval_psnr(loader, model,
data_norm=config.get('data_norm'),
eval_type=config.get('eval_type'),
eval_bsize=config.get('eval_bsize'),
window_size=int(args.window),
scale_max = int(args.scale_max),
fast = args.fast,
verbose=True)
print('result: {:.4f}'.format(res))