-
Notifications
You must be signed in to change notification settings - Fork 2
/
Retrieval.py
364 lines (294 loc) · 14.6 KB
/
Retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import argparse
import os
import sys
import math
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from models.tokenization_bert import BertTokenizer
import utils
from dataset import create_dataset, create_sampler, create_loader
from scheduler import create_scheduler
from optim import create_optimizer
from models.model_retrieval import PIR
def train(model, data_loader, optimizer, tokenizer, epoch, device, scheduler, config):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
if config['use_affil_loss']:
metric_logger.add_meter('loss_affil', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
metric_logger.add_meter('loss_contr', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
elif config['use_triplet_loss']:
metric_logger.add_meter('loss_triplet', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
else:
metric_logger.add_meter('loss_contr', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
step_size = 100
print('_________________{}__________________'.format(len(data_loader)))
for i, (image, text, idx, label) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = image.to(device, non_blocking=True)
idx = idx.to(device, non_blocking=True)
## token 长度调整
text_input = tokenizer(text, padding='longest', max_length=config['max_tokens'], return_tensors="pt").to(device)
# mask_text_input = tokenizer(mask_text, padding='longest', max_length=config['max_tokens'], return_tensors="pt").to(device)
## 损失函数选择
if config['use_affil_loss']:
loss_contr, loss_affil = model(image, text_input.input_ids, idx=idx, label=label)
loss = loss_contr + config['center_factor'] * loss_affil
elif config['use_triplet_loss']:
loss_triplet = model(image, text_input.input_ids)
loss = loss_triplet
else:
loss_contr = model(image, text_input.input_ids, idx=idx, label=label)
loss = loss_contr
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# 检测是否有没有参与反向传播的模块和参数
# for name, param in model.named_parameters():
# if param.grad is None:
# print('Miss grad module_name is :'.format(name))
if config['use_affil_loss']:
metric_logger.update(loss_affil=loss_affil.item())
metric_logger.update(loss_contr=loss_contr.item())
elif config['use_triplet_loss']:
metric_logger.update(loss_triplet=loss_triplet.item())
else:
metric_logger.update(loss_contr=loss_contr.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.5f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluation(model, data_loader, tokenizer, device, config):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Evaluation:'
print('Computing features for evaluation...')
start_time = time.time()
texts = data_loader.dataset.text
# mask_texts = data_loader.dataset.mask_text
num_text = len(texts)
text_bs = config['batch_size_test_text'] # 256
text_embeds = []
image_embeds = []
all_ = []
print('_________________{}__________________'.format(len(data_loader)))
# Inference 图像特征
for image, img_id in data_loader:
image = image.to(device)
if config['is_baseline']:
image_embed = model.get_vision_embeds(image)
else:
# image_embed = model.get_vision_fusion_embeds(image, config)
t1 = time.time()
image_embed = model.get_vision_fusion_embeds(image, config)
t2 = time.time()
all_.append(t2 - t1)
image_embeds.append(image_embed)
print("infer image time:{:.2f}".format(np.average(all_)))
# Inference 文本特征
for i in range(0, num_text, text_bs):
text = texts[i: min(num_text, i + text_bs)]
text_input = tokenizer(text, padding='longest', truncation=True, max_length=config['max_tokens'],
return_tensors="pt").to(device)
if config['is_baseline']:
text_embed = model.get_text_embeds(text_input.input_ids)
else:
text_embed = model.get_text_fusion_embeds(text_input.input_ids, config)
text_embeds.append(text_embed)
image_embeds = torch.cat(image_embeds, dim=0)
text_embeds = torch.cat(text_embeds, dim=0)
# 计算image_emb和text_emb的相似度矩阵
sims_matrix = image_embeds @ text_embeds.t()
score_matrix_i2t = sims_matrix
score_matrix_t2i = sims_matrix.t()
if args.distributed:
dist.barrier()
torch.distributed.all_reduce(score_matrix_i2t, op=torch.distributed.ReduceOp.SUM)
torch.distributed.all_reduce(score_matrix_t2i, op=torch.distributed.ReduceOp.SUM)
if utils.is_main_process():
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Evaluation time {}'.format(total_time_str))
return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()
@torch.no_grad()
def itm_eval(scores_i2t, scores_t2i, txt2img, img2txt):
# Images->Text
ranks = np.zeros(scores_i2t.shape[0])
for index, score in enumerate(scores_i2t):
inds = np.argsort(score)[::-1]
# Score
rank = 1e20
for i in img2txt[index]:
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
# Compute metrics
tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
# Text->Images
ranks = np.zeros(scores_t2i.shape[0])
for index, score in enumerate(scores_t2i):
inds = np.argsort(score)[::-1]
ranks[index] = np.where(inds == txt2img[index])[0][0]
# Compute metrics
ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
tr_mean = (tr1 + tr5 + tr10) / 3
ir_mean = (ir1 + ir5 + ir10) / 3
r_mean = (tr_mean + ir_mean) / 2
eval_result = {'txt_r1': round(tr1,2),
'txt_r5': round(tr5,2),
'txt_r10': round(tr10,2),
'img_r1': round(ir1,2),
'img_r5': round(ir5,2),
'img_r10': round(ir10,2),
'r_mean': round(r_mean,2)}
return eval_result
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
world_size = utils.get_world_size()
if args.bs > 0:
config['batch_size_train'] = args.bs // world_size
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
print("Creating model", flush=True)
model = PIR(config=config)
# load pre-trianed model
# 不加载预训练模型
if args.checkpoint != '-1':
model.load_pretrained(args.checkpoint, config, is_eval=args.evaluate)
model = model.to(device)
print("### Total Params: ", sum(p.numel() for p in model.parameters() if p.requires_grad))
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
tokenizer = BertTokenizer.from_pretrained(config['text_encoder'])
print("Creating retrieval dataset", flush=True)
train_dataset, val_dataset, test_dataset = create_dataset('re', config, args.evaluate)
start_time = time.time()
print("### output_dir, ", args.output_dir, flush=True)
if args.evaluate:
print("Start evaluating", flush=True)
test_loader = create_loader([test_dataset], [None],
batch_size=[config['batch_size_test']],
num_workers=[4],
is_trains=[False],
collate_fns=[None])[0]
# val and test
# score_val_i2t, score_val_t2i, = evaluation(model_without_ddp, val_loader, tokenizer, device, config)
score_test_i2t, score_test_t2i = evaluation(model_without_ddp, test_loader, tokenizer, device, config)
if utils.is_main_process():
# val_result = itm_eval(score_val_i2t, score_val_t2i, val_loader.dataset.txt2img, val_loader.dataset.img2txt)
# print(val_result)
test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img, test_loader.dataset.img2txt)
print(test_result)
dist.barrier()
else:
print("Start training", flush=True)
train_dataset_size = len(train_dataset)
if utils.is_main_process():
print(f"### data {train_dataset_size}, batch size, {config['batch_size_train']} x {world_size}")
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler([train_dataset], [True], num_tasks, global_rank) + [None, None]
else:
samplers = [None, None, None]
train_loader, val_loader, test_loader = create_loader([train_dataset, val_dataset, test_dataset], samplers,
batch_size=[config['batch_size_train']] + [
config['batch_size_test']] * 2,
num_workers=[4, 4, 4],
is_trains=[True, False, False],
collate_fns=[None, None, None])
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config['schedular'])
arg_sche['step_per_epoch'] = math.ceil(train_dataset_size/(config['batch_size_train']*world_size))
lr_scheduler = create_scheduler(arg_sche, optimizer)
max_epoch = config['schedular']['epochs']
best = 0
best_epoch = 0
for epoch in range(0, max_epoch):
if args.distributed:
train_loader.sampler.set_epoch(epoch)
train_stats = train(model, train_loader, optimizer, tokenizer, epoch, device, lr_scheduler, config)
# score_val_i2t, score_val_t2i, = evaluation(model_without_ddp, val_loader, tokenizer, device, config)
score_test_i2t, score_test_t2i = evaluation(model_without_ddp, test_loader, tokenizer, device, config)
if utils.is_main_process():
# val_result = itm_eval(score_val_i2t, score_val_t2i, val_loader.dataset.txt2img, val_loader.dataset.img2txt)
# print(val_result)
test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img, test_loader.dataset.img2txt)
print(test_result)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
# **{f'val_{k}': v for k, v in val_result.items()},
**{f'test_{k}': v for k, v in test_result.items()},
'epoch': epoch}
with open(os.path.join(args.output_dir, "log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
if test_result['r_mean'] > best:
save_obj = {
'model': model_without_ddp.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'lr_scheduler': lr_scheduler.state_dict(),
'config': config,
# 'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
best = test_result['r_mean']
best_epoch = epoch
elif epoch >= config['schedular']['epochs'] - 1:
save_obj = {
'model': model_without_ddp.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'lr_scheduler': lr_scheduler.state_dict(),
'config': config,
# 'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, f'checkpoint_{epoch}.pth'))
dist.barrier()
torch.cuda.empty_cache()
if utils.is_main_process():
with open(os.path.join(args.output_dir, "log.txt"), "a") as f:
f.write("best epoch: %d" % best_epoch)
os.system(f"cat {args.output_dir}/log.txt")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('### Time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str, required=True)
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--output_dir', type=str, required=True) # this script works for both mscoco and flickr30k
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=2, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', action='store_false')
parser.add_argument('--bs', default=-1, type=int, help="for each gpu, batch_size = bs // num_gpus")
parser.add_argument('--evaluate', action='store_true')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)