-
Notifications
You must be signed in to change notification settings - Fork 27
/
2013-03-15-Review.html
386 lines (303 loc) · 9.84 KB
/
2013-03-15-Review.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>2013-03-14-Review</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8"/>
<meta name="title" content="2013-03-14-Review"/>
<meta name="generator" content="Org-mode"/>
<meta name="generated" content="2013-03-15 13:36:52 PDT"/>
<meta name="author" content="Jim Blomo"/>
<meta name="description" content=""/>
<meta name="keywords" content=""/>
<link rel="stylesheet" type="text/css" href="production/common.css" />
<link rel="stylesheet" type="text/css" href="production/screen.css" media="screen" />
<link rel="stylesheet" type="text/css" href="production/projection.css" media="projection" />
<link rel="stylesheet" type="text/css" href="production/color-blue.css" media="projection" />
<link rel="stylesheet" type="text/css" href="production/presenter.css" media="presenter" />
<link href='http://fonts.googleapis.com/css?family=Lobster+Two:700|Yanone+Kaffeesatz:700|Open+Sans' rel='stylesheet' type='text/css'>
</head>
<body>
<div id="preamble">
</div>
<div id="content">
<h1 class="title">2013-03-14-Review</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#sec-1">1 Review</a></li>
<li><a href="#sec-2">2 Case Studies</a></li>
<li><a href="#sec-3">3 Obtaining Data</a></li>
<li><a href="#sec-4">4 Probability</a></li>
<li><a href="#sec-5">5 Preprocessing</a></li>
<li><a href="#sec-6">6 Data Warehouse</a></li>
<li><a href="#sec-7">7 MapReduce</a></li>
<li><a href="#sec-8">8 Decision Tree</a></li>
<li><a href="#sec-9">9 Naive Bays</a></li>
<li><a href="#sec-10">10 SVM</a></li>
<li><a href="#sec-11">11 Neural Networks</a></li>
<li><a href="#sec-12">12 Partitioning Clusters</a></li>
<li><a href="#sec-13">13 Hierarchical Clustering</a></li>
<li><a href="#sec-14">14 <b>Good Luck!</b></a></li>
</ul>
</div>
</div>
<div id="outline-container-1" class="outline-2">
<h2 id="sec-1"><span class="section-number-2">1</span> Review <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-1">
<ul>
<li>Midterm target length: 1.5 hours
</li>
<li>Time limit: 3 hours
</li>
<li>1 cheat sheet, 8.5x11
</li>
<li>Calculators OK, not required
</li>
<li>Questions from slides have a higher probability of appearing
</li>
<li>Questions from the reading are fair game
</li>
</ul>
</div>
</div>
<div id="outline-container-2" class="outline-2">
<h2 id="sec-2"><span class="section-number-2">2</span> Case Studies <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-2">
<ul>
<li>Example of "transactional data"
</li>
<li>Example of non-transactional data
</li>
</ul>
</div>
</div>
<div id="outline-container-3" class="outline-2">
<h2 id="sec-3"><span class="section-number-2">3</span> Obtaining Data <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-3">
<ul>
<li>Tradeoffs of dataset vs API?
</li>
<li>Tradeoffs of operational database vs data warehouse
</li>
<li>Unix commands to explore data?
</li>
</ul>
</div>
</div>
<div id="outline-container-4" class="outline-2">
<h2 id="sec-4"><span class="section-number-2">4</span> Probability <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-4">
<ul>
<li>Other names for a Feature
</li>
<li>Difference between Discrete and Continuous feature
</li>
<li>What type of feature is day of the week?
</li>
<li>Ways to measure central tendency?
</li>
<li>What is skew?
</li>
<li>When is asymmetric binary dissimilarity useful?
</li>
<li>How to calculate L<sub>2</sub> norm of two points?
</li>
<li>What is cosign similarity?
</li>
</ul>
</div>
</div>
<div id="outline-container-5" class="outline-2">
<h2 id="sec-5"><span class="section-number-2">5</span> Preprocessing <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-5">
<ul>
<li>When storing the same fact in different ways, what type of problem is
likely?
</li>
<li>Can data corruption happen with no mistakes and no bugs?
</li>
<li>What are some options to deal with missing values?
</li>
<li>What are some options to deal with outliers?
</li>
<li>What does correlation imply?
</li>
</ul>
</div>
</div>
<div id="outline-container-6" class="outline-2">
<h2 id="sec-6"><span class="section-number-2">6</span> Data Warehouse <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-6">
<ul>
<li>OLAP vs OLTP
</li>
<li>Examples of database metadata?
</li>
<li>What is a data multi-cube?
</li>
<li>What is at the center of a star schema?
</li>
<li>What is the tradeoff being made in dimension tables?
</li>
<li>Define:
<ul>
<li>Rollup
</li>
<li>Drill-down
</li>
<li>Slice
</li>
<li>Dice
</li>
<li>Pivot
</li>
</ul>
</li>
</ul>
</div>
</div>
<div id="outline-container-7" class="outline-2">
<h2 id="sec-7"><span class="section-number-2">7</span> MapReduce <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-7">
<ul>
<li>What tradeoff are we making with MapReduce?
</li>
<li>Why is log processing a typical use of MapReduce?
</li>
<li>What types of processing is not well suited?
</li>
<li>For a multi-step job, the output of a reducer is fed into what?
</li>
</ul>
</div>
</div>
<div id="outline-container-8" class="outline-2">
<h2 id="sec-8"><span class="section-number-2">8</span> Decision Tree <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-8">
<ul>
<li>What table can we create from the verification results to understand
performance of our model?
</li>
<li>For supervised learning, what is required to train a model?
</li>
<li>What is a naive way to optimize precision?
</li>
<li>Recall?
</li>
<li>Assuming we use all attributes to classify, what is the height of
our tree?
</li>
<li>What are we optimizing for in the leaf nodes?
</li>
</ul>
</div>
</div>
<div id="outline-container-9" class="outline-2">
<h2 id="sec-9"><span class="section-number-2">9</span> Naive Bays <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-9">
<ul>
<li>Where does the testing set come from?
</li>
<li>What is the <code>k</code> in k-fold cross-validation?
</li>
<li>Bayes theorem finds P(A|B). In email spam detection, what are A and B?
</li>
<li>What is the Naive assumption we make in Naive Bayes?
</li>
<li>Why can training many models be useful?
</li>
<li>What is bootstrap sampling?
</li>
<li>What is a random forest?
</li>
</ul>
</div>
</div>
<div id="outline-container-10" class="outline-2">
<h2 id="sec-10"><span class="section-number-2">10</span> SVM <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-10">
<ul>
<li>When finding a linear fit for home prices, what is our fitness function?
</li>
<li>What is the gradient in gradient descent?
</li>
<li>In the general case, are you guaranteed to find the globally optimal
solution when using gradient descent?
</li>
<li>Why does SVM work so well in practice, even though it requires linear
separability?
</li>
<li>If your data is not linearly separable, can you use SVM?
</li>
</ul>
</div>
</div>
<div id="outline-container-11" class="outline-2">
<h2 id="sec-11"><span class="section-number-2">11</span> Neural Networks <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-11">
<ul>
<li>What is model variance?
</li>
<li>What problem does high model variance indicate?
</li>
<li>What is an activation function?
</li>
<li>What types of problems are neural networks especially suited for?
</li>
<li>What are we improve during backward propagation?
</li>
</ul>
</div>
</div>
<div id="outline-container-12" class="outline-2">
<h2 id="sec-12"><span class="section-number-2">12</span> Partitioning Clusters <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-12">
<ul>
<li>What is the difference between k-means and k-nearest-neighbor?
</li>
<li>What are some of the problems with k-means?
</li>
<li>Why is normalization especially useful in clustering?
</li>
<li>What are the tradeoffs for using k-medoid clustering?
</li>
</ul>
</div>
</div>
<div id="outline-container-13" class="outline-2">
<h2 id="sec-13"><span class="section-number-2">13</span> Hierarchical Clustering <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-13">
<ul>
<li>What are the options to calculate cluster distance?
</li>
<li>Describe how to draw a dendrogram
</li>
<li>What are the drawbacks to density clustering with DBSCAN?
</li>
<li>If you had movie description data, but no genres, would you use Fuzzy
Clustering or Partitioned Clustering?
</li>
<li>How can we evaluate a clustering algorithm if our data is already labeled
with clusters?
</li>
</ul>
</div>
</div>
<div id="outline-container-14" class="outline-2">
<h2 id="sec-14"><span class="section-number-2">14</span> <b>Good Luck!</b> <span class="tag"><span class="slide">slide</span></span></h2>
<div class="outline-text-2" id="text-14">
<script type="text/javascript" src="production/org-html-slideshow.js"></script>
</div>
</div>
</div>
<div id="postamble">
<p class="date">Date: 2013-03-15 13:36:52 PDT</p>
<p class="author">Author: Jim Blomo</p>
<p class="creator">Org version 7.8.02 with Emacs version 23</p>
<a href="http://validator.w3.org/check?uri=referer">Validate XHTML 1.0</a>
</div>
</body>
</html>