forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 2
/
test_numeric.py
1087 lines (862 loc) · 39.7 KB
/
test_numeric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
from datetime import datetime
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
from pandas.compat import range
import pandas as pd
from pandas import Float64Index, Index, Int64Index, Series, UInt64Index
from pandas.tests.indexes.common import Base
import pandas.util.testing as tm
class Numeric(Base):
def test_can_hold_identifiers(self):
idx = self.create_index()
key = idx[0]
assert idx._can_hold_identifiers_and_holds_name(key) is False
def test_numeric_compat(self):
pass # override Base method
def test_explicit_conversions(self):
# GH 8608
# add/sub are overridden explicitly for Float/Int Index
idx = self._holder(np.arange(5, dtype='int64'))
# float conversions
arr = np.arange(5, dtype='int64') * 3.2
expected = Float64Index(arr)
fidx = idx * 3.2
tm.assert_index_equal(fidx, expected)
fidx = 3.2 * idx
tm.assert_index_equal(fidx, expected)
# interops with numpy arrays
expected = Float64Index(arr)
a = np.zeros(5, dtype='float64')
result = fidx - a
tm.assert_index_equal(result, expected)
expected = Float64Index(-arr)
a = np.zeros(5, dtype='float64')
result = a - fidx
tm.assert_index_equal(result, expected)
def test_index_groupby(self):
int_idx = Index(range(6))
float_idx = Index(np.arange(0, 0.6, 0.1))
obj_idx = Index('A B C D E F'.split())
dt_idx = pd.date_range('2013-01-01', freq='M', periods=6)
for idx in [int_idx, float_idx, obj_idx, dt_idx]:
to_groupby = np.array([1, 2, np.nan, np.nan, 2, 1])
tm.assert_dict_equal(idx.groupby(to_groupby),
{1.0: idx[[0, 5]], 2.0: idx[[1, 4]]})
to_groupby = Index([datetime(2011, 11, 1),
datetime(2011, 12, 1),
pd.NaT,
pd.NaT,
datetime(2011, 12, 1),
datetime(2011, 11, 1)],
tz='UTC').values
ex_keys = [Timestamp('2011-11-01'), Timestamp('2011-12-01')]
expected = {ex_keys[0]: idx[[0, 5]],
ex_keys[1]: idx[[1, 4]]}
tm.assert_dict_equal(idx.groupby(to_groupby), expected)
@pytest.mark.parametrize('klass', [list, tuple, np.array, Series])
def test_where(self, klass):
i = self.create_index()
cond = [True] * len(i)
expected = i
result = i.where(klass(cond))
cond = [False] + [True] * (len(i) - 1)
expected = Float64Index([i._na_value] + i[1:].tolist())
result = i.where(klass(cond))
tm.assert_index_equal(result, expected)
def test_insert(self):
# GH 18295 (test missing)
expected = Float64Index([0, np.nan, 1, 2, 3, 4])
for na in (np.nan, pd.NaT, None):
result = self.create_index().insert(1, na)
tm.assert_index_equal(result, expected)
class TestFloat64Index(Numeric):
_holder = Float64Index
def setup_method(self, method):
self.indices = dict(mixed=Float64Index([1.5, 2, 3, 4, 5]),
float=Float64Index(np.arange(5) * 2.5),
mixed_dec=Float64Index([5, 4, 3, 2, 1.5]),
float_dec=Float64Index(np.arange(4, -1, -1) * 2.5))
self.setup_indices()
def create_index(self):
return Float64Index(np.arange(5, dtype='float64'))
def test_repr_roundtrip(self):
for ind in (self.mixed, self.float):
tm.assert_index_equal(eval(repr(ind)), ind)
def check_is_index(self, i):
assert isinstance(i, Index)
assert not isinstance(i, Float64Index)
def check_coerce(self, a, b, is_float_index=True):
assert a.equals(b)
tm.assert_index_equal(a, b, exact=False)
if is_float_index:
assert isinstance(b, Float64Index)
else:
self.check_is_index(b)
def test_constructor(self):
# explicit construction
index = Float64Index([1, 2, 3, 4, 5])
assert isinstance(index, Float64Index)
expected = np.array([1, 2, 3, 4, 5], dtype='float64')
tm.assert_numpy_array_equal(index.values, expected)
index = Float64Index(np.array([1, 2, 3, 4, 5]))
assert isinstance(index, Float64Index)
index = Float64Index([1., 2, 3, 4, 5])
assert isinstance(index, Float64Index)
index = Float64Index(np.array([1., 2, 3, 4, 5]))
assert isinstance(index, Float64Index)
assert index.dtype == float
index = Float64Index(np.array([1., 2, 3, 4, 5]), dtype=np.float32)
assert isinstance(index, Float64Index)
assert index.dtype == np.float64
index = Float64Index(np.array([1, 2, 3, 4, 5]), dtype=np.float32)
assert isinstance(index, Float64Index)
assert index.dtype == np.float64
# nan handling
result = Float64Index([np.nan, np.nan])
assert pd.isna(result.values).all()
result = Float64Index(np.array([np.nan]))
assert pd.isna(result.values).all()
result = Index(np.array([np.nan]))
assert pd.isna(result.values).all()
def test_constructor_invalid(self):
# invalid
pytest.raises(TypeError, Float64Index, 0.)
pytest.raises(TypeError, Float64Index, ['a', 'b', 0.])
pytest.raises(TypeError, Float64Index, [Timestamp('20130101')])
def test_constructor_coerce(self):
self.check_coerce(self.mixed, Index([1.5, 2, 3, 4, 5]))
self.check_coerce(self.float, Index(np.arange(5) * 2.5))
self.check_coerce(self.float, Index(np.array(
np.arange(5) * 2.5, dtype=object)))
def test_constructor_explicit(self):
# these don't auto convert
self.check_coerce(self.float,
Index((np.arange(5) * 2.5), dtype=object),
is_float_index=False)
self.check_coerce(self.mixed, Index(
[1.5, 2, 3, 4, 5], dtype=object), is_float_index=False)
def test_astype(self):
result = self.float.astype(object)
assert result.equals(self.float)
assert self.float.equals(result)
self.check_is_index(result)
i = self.mixed.copy()
i.name = 'foo'
result = i.astype(object)
assert result.equals(i)
assert i.equals(result)
self.check_is_index(result)
# GH 12881
# a float astype int
for dtype in ['int16', 'int32', 'int64']:
i = Float64Index([0, 1, 2])
result = i.astype(dtype)
expected = Int64Index([0, 1, 2])
tm.assert_index_equal(result, expected)
i = Float64Index([0, 1.1, 2])
result = i.astype(dtype)
expected = Int64Index([0, 1, 2])
tm.assert_index_equal(result, expected)
for dtype in ['float32', 'float64']:
i = Float64Index([0, 1, 2])
result = i.astype(dtype)
expected = i
tm.assert_index_equal(result, expected)
i = Float64Index([0, 1.1, 2])
result = i.astype(dtype)
expected = Index(i.values.astype(dtype))
tm.assert_index_equal(result, expected)
# invalid
for dtype in ['M8[ns]', 'm8[ns]']:
pytest.raises(TypeError, lambda: i.astype(dtype))
# GH 13149
for dtype in ['int16', 'int32', 'int64']:
i = Float64Index([0, 1.1, np.NAN])
pytest.raises(ValueError, lambda: i.astype(dtype))
def test_type_coercion_fail(self, any_int_dtype):
# see gh-15832
msg = "Trying to coerce float values to integers"
with pytest.raises(ValueError, match=msg):
Index([1, 2, 3.5], dtype=any_int_dtype)
def test_type_coercion_valid(self, float_dtype):
# There is no Float32Index, so we always
# generate Float64Index.
i = Index([1, 2, 3.5], dtype=float_dtype)
tm.assert_index_equal(i, Index([1, 2, 3.5]))
def test_equals_numeric(self):
i = Float64Index([1.0, 2.0])
assert i.equals(i)
assert i.identical(i)
i2 = Float64Index([1.0, 2.0])
assert i.equals(i2)
i = Float64Index([1.0, np.nan])
assert i.equals(i)
assert i.identical(i)
i2 = Float64Index([1.0, np.nan])
assert i.equals(i2)
def test_get_indexer(self):
idx = Float64Index([0.0, 1.0, 2.0])
tm.assert_numpy_array_equal(idx.get_indexer(idx),
np.array([0, 1, 2], dtype=np.intp))
target = [-0.1, 0.5, 1.1]
tm.assert_numpy_array_equal(idx.get_indexer(target, 'pad'),
np.array([-1, 0, 1], dtype=np.intp))
tm.assert_numpy_array_equal(idx.get_indexer(target, 'backfill'),
np.array([0, 1, 2], dtype=np.intp))
tm.assert_numpy_array_equal(idx.get_indexer(target, 'nearest'),
np.array([0, 1, 1], dtype=np.intp))
def test_get_loc(self):
idx = Float64Index([0.0, 1.0, 2.0])
for method in [None, 'pad', 'backfill', 'nearest']:
assert idx.get_loc(1, method) == 1
if method is not None:
assert idx.get_loc(1, method, tolerance=0) == 1
for method, loc in [('pad', 1), ('backfill', 2), ('nearest', 1)]:
assert idx.get_loc(1.1, method) == loc
assert idx.get_loc(1.1, method, tolerance=0.9) == loc
pytest.raises(KeyError, idx.get_loc, 'foo')
pytest.raises(KeyError, idx.get_loc, 1.5)
pytest.raises(KeyError, idx.get_loc, 1.5, method='pad',
tolerance=0.1)
pytest.raises(KeyError, idx.get_loc, True)
pytest.raises(KeyError, idx.get_loc, False)
with pytest.raises(ValueError, match='must be numeric'):
idx.get_loc(1.4, method='nearest', tolerance='foo')
with pytest.raises(ValueError, match='must contain numeric elements'):
idx.get_loc(1.4, method='nearest', tolerance=np.array(['foo']))
with pytest.raises(
ValueError,
match='tolerance size must match target index size'):
idx.get_loc(1.4, method='nearest', tolerance=np.array([1, 2]))
def test_get_loc_na(self):
idx = Float64Index([np.nan, 1, 2])
assert idx.get_loc(1) == 1
assert idx.get_loc(np.nan) == 0
idx = Float64Index([np.nan, 1, np.nan])
assert idx.get_loc(1) == 1
# representable by slice [0:2:2]
# pytest.raises(KeyError, idx.slice_locs, np.nan)
sliced = idx.slice_locs(np.nan)
assert isinstance(sliced, tuple)
assert sliced == (0, 3)
# not representable by slice
idx = Float64Index([np.nan, 1, np.nan, np.nan])
assert idx.get_loc(1) == 1
pytest.raises(KeyError, idx.slice_locs, np.nan)
def test_get_loc_missing_nan(self):
# GH 8569
idx = Float64Index([1, 2])
assert idx.get_loc(1) == 0
pytest.raises(KeyError, idx.get_loc, 3)
pytest.raises(KeyError, idx.get_loc, np.nan)
pytest.raises(KeyError, idx.get_loc, [np.nan])
def test_contains_nans(self):
i = Float64Index([1.0, 2.0, np.nan])
assert np.nan in i
def test_contains_not_nans(self):
i = Float64Index([1.0, 2.0, np.nan])
assert 1.0 in i
def test_doesnt_contain_all_the_things(self):
i = Float64Index([np.nan])
assert not i.isin([0]).item()
assert not i.isin([1]).item()
assert i.isin([np.nan]).item()
def test_nan_multiple_containment(self):
i = Float64Index([1.0, np.nan])
tm.assert_numpy_array_equal(i.isin([1.0]), np.array([True, False]))
tm.assert_numpy_array_equal(i.isin([2.0, np.pi]),
np.array([False, False]))
tm.assert_numpy_array_equal(i.isin([np.nan]), np.array([False, True]))
tm.assert_numpy_array_equal(i.isin([1.0, np.nan]),
np.array([True, True]))
i = Float64Index([1.0, 2.0])
tm.assert_numpy_array_equal(i.isin([np.nan]), np.array([False, False]))
def test_astype_from_object(self):
index = Index([1.0, np.nan, 0.2], dtype='object')
result = index.astype(float)
expected = Float64Index([1.0, np.nan, 0.2])
assert result.dtype == expected.dtype
tm.assert_index_equal(result, expected)
def test_fillna_float64(self):
# GH 11343
idx = Index([1.0, np.nan, 3.0], dtype=float, name='x')
# can't downcast
exp = Index([1.0, 0.1, 3.0], name='x')
tm.assert_index_equal(idx.fillna(0.1), exp)
# downcast
exp = Float64Index([1.0, 2.0, 3.0], name='x')
tm.assert_index_equal(idx.fillna(2), exp)
# object
exp = Index([1.0, 'obj', 3.0], name='x')
tm.assert_index_equal(idx.fillna('obj'), exp)
def test_take_fill_value(self):
# GH 12631
idx = pd.Float64Index([1., 2., 3.], name='xxx')
result = idx.take(np.array([1, 0, -1]))
expected = pd.Float64Index([2., 1., 3.], name='xxx')
tm.assert_index_equal(result, expected)
# fill_value
result = idx.take(np.array([1, 0, -1]), fill_value=True)
expected = pd.Float64Index([2., 1., np.nan], name='xxx')
tm.assert_index_equal(result, expected)
# allow_fill=False
result = idx.take(np.array([1, 0, -1]), allow_fill=False,
fill_value=True)
expected = pd.Float64Index([2., 1., 3.], name='xxx')
tm.assert_index_equal(result, expected)
msg = ('When allow_fill=True and fill_value is not None, '
'all indices must be >= -1')
with pytest.raises(ValueError, match=msg):
idx.take(np.array([1, 0, -2]), fill_value=True)
with pytest.raises(ValueError, match=msg):
idx.take(np.array([1, 0, -5]), fill_value=True)
with pytest.raises(IndexError):
idx.take(np.array([1, -5]))
class NumericInt(Numeric):
def test_view(self, indices):
super(NumericInt, self).test_view(indices)
i = self._holder([], name='Foo')
i_view = i.view()
assert i_view.name == 'Foo'
i_view = i.view(self._dtype)
tm.assert_index_equal(i, self._holder(i_view, name='Foo'))
i_view = i.view(self._holder)
tm.assert_index_equal(i, self._holder(i_view, name='Foo'))
def test_is_monotonic(self):
assert self.index.is_monotonic is True
assert self.index.is_monotonic_increasing is True
assert self.index._is_strictly_monotonic_increasing is True
assert self.index.is_monotonic_decreasing is False
assert self.index._is_strictly_monotonic_decreasing is False
index = self._holder([4, 3, 2, 1])
assert index.is_monotonic is False
assert index._is_strictly_monotonic_increasing is False
assert index._is_strictly_monotonic_decreasing is True
index = self._holder([1])
assert index.is_monotonic is True
assert index.is_monotonic_increasing is True
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_increasing is True
assert index._is_strictly_monotonic_decreasing is True
def test_is_strictly_monotonic(self):
index = self._holder([1, 1, 2, 3])
assert index.is_monotonic_increasing is True
assert index._is_strictly_monotonic_increasing is False
index = self._holder([3, 2, 1, 1])
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_decreasing is False
index = self._holder([1, 1])
assert index.is_monotonic_increasing
assert index.is_monotonic_decreasing
assert not index._is_strictly_monotonic_increasing
assert not index._is_strictly_monotonic_decreasing
def test_logical_compat(self):
idx = self.create_index()
assert idx.all() == idx.values.all()
assert idx.any() == idx.values.any()
def test_identical(self):
i = Index(self.index.copy())
assert i.identical(self.index)
same_values_different_type = Index(i, dtype=object)
assert not i.identical(same_values_different_type)
i = self.index.copy(dtype=object)
i = i.rename('foo')
same_values = Index(i, dtype=object)
assert same_values.identical(i)
assert not i.identical(self.index)
assert Index(same_values, name='foo', dtype=object).identical(i)
assert not self.index.copy(dtype=object).identical(
self.index.copy(dtype=self._dtype))
def test_join_non_unique(self):
left = Index([4, 4, 3, 3])
joined, lidx, ridx = left.join(left, return_indexers=True)
exp_joined = Index([3, 3, 3, 3, 4, 4, 4, 4])
tm.assert_index_equal(joined, exp_joined)
exp_lidx = np.array([2, 2, 3, 3, 0, 0, 1, 1], dtype=np.intp)
tm.assert_numpy_array_equal(lidx, exp_lidx)
exp_ridx = np.array([2, 3, 2, 3, 0, 1, 0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(ridx, exp_ridx)
@pytest.mark.parametrize('kind', ['outer', 'inner', 'left', 'right'])
def test_join_self(self, kind):
joined = self.index.join(self.index, how=kind)
assert self.index is joined
def test_union_noncomparable(self):
from datetime import datetime, timedelta
# corner case, non-Int64Index
now = datetime.now()
other = Index([now + timedelta(i) for i in range(4)], dtype=object)
result = self.index.union(other)
expected = Index(np.concatenate((self.index, other)))
tm.assert_index_equal(result, expected)
result = other.union(self.index)
expected = Index(np.concatenate((other, self.index)))
tm.assert_index_equal(result, expected)
def test_cant_or_shouldnt_cast(self):
# can't
data = ['foo', 'bar', 'baz']
pytest.raises(TypeError, self._holder, data)
# shouldn't
data = ['0', '1', '2']
pytest.raises(TypeError, self._holder, data)
def test_view_index(self):
self.index.view(Index)
def test_prevent_casting(self):
result = self.index.astype('O')
assert result.dtype == np.object_
def test_take_preserve_name(self):
index = self._holder([1, 2, 3, 4], name='foo')
taken = index.take([3, 0, 1])
assert index.name == taken.name
def test_take_fill_value(self):
# see gh-12631
idx = self._holder([1, 2, 3], name='xxx')
result = idx.take(np.array([1, 0, -1]))
expected = self._holder([2, 1, 3], name='xxx')
tm.assert_index_equal(result, expected)
name = self._holder.__name__
msg = ("Unable to fill values because "
"{name} cannot contain NA").format(name=name)
# fill_value=True
with pytest.raises(ValueError, match=msg):
idx.take(np.array([1, 0, -1]), fill_value=True)
# allow_fill=False
result = idx.take(np.array([1, 0, -1]), allow_fill=False,
fill_value=True)
expected = self._holder([2, 1, 3], name='xxx')
tm.assert_index_equal(result, expected)
with pytest.raises(ValueError, match=msg):
idx.take(np.array([1, 0, -2]), fill_value=True)
with pytest.raises(ValueError, match=msg):
idx.take(np.array([1, 0, -5]), fill_value=True)
with pytest.raises(IndexError):
idx.take(np.array([1, -5]))
def test_slice_keep_name(self):
idx = self._holder([1, 2], name='asdf')
assert idx.name == idx[1:].name
class TestInt64Index(NumericInt):
_dtype = 'int64'
_holder = Int64Index
def setup_method(self, method):
self.indices = dict(index=Int64Index(np.arange(0, 20, 2)),
index_dec=Int64Index(np.arange(19, -1, -1)))
self.setup_indices()
def create_index(self):
return Int64Index(np.arange(5, dtype='int64'))
def test_constructor(self):
# pass list, coerce fine
index = Int64Index([-5, 0, 1, 2])
expected = Index([-5, 0, 1, 2], dtype=np.int64)
tm.assert_index_equal(index, expected)
# from iterable
index = Int64Index(iter([-5, 0, 1, 2]))
tm.assert_index_equal(index, expected)
# scalar raise Exception
pytest.raises(TypeError, Int64Index, 5)
# copy
arr = self.index.values
new_index = Int64Index(arr, copy=True)
tm.assert_index_equal(new_index, self.index)
val = arr[0] + 3000
# this should not change index
arr[0] = val
assert new_index[0] != val
# interpret list-like
expected = Int64Index([5, 0])
for cls in [Index, Int64Index]:
for idx in [cls([5, 0], dtype='int64'),
cls(np.array([5, 0]), dtype='int64'),
cls(Series([5, 0]), dtype='int64')]:
tm.assert_index_equal(idx, expected)
def test_constructor_corner(self):
arr = np.array([1, 2, 3, 4], dtype=object)
index = Int64Index(arr)
assert index.values.dtype == np.int64
tm.assert_index_equal(index, Index(arr))
# preventing casting
arr = np.array([1, '2', 3, '4'], dtype=object)
with pytest.raises(TypeError, match='casting'):
Int64Index(arr)
arr_with_floats = [0, 2, 3, 4, 5, 1.25, 3, -1]
with pytest.raises(TypeError, match='casting'):
Int64Index(arr_with_floats)
def test_constructor_coercion_signed_to_unsigned(self, uint_dtype):
# see gh-15832
msg = "Trying to coerce negative values to unsigned integers"
with pytest.raises(OverflowError, match=msg):
Index([-1], dtype=uint_dtype)
def test_coerce_list(self):
# coerce things
arr = Index([1, 2, 3, 4])
assert isinstance(arr, Int64Index)
# but not if explicit dtype passed
arr = Index([1, 2, 3, 4], dtype=object)
assert isinstance(arr, Index)
def test_get_indexer(self):
target = Int64Index(np.arange(10))
indexer = self.index.get_indexer(target)
expected = np.array([0, -1, 1, -1, 2, -1, 3, -1, 4, -1], dtype=np.intp)
tm.assert_numpy_array_equal(indexer, expected)
target = Int64Index(np.arange(10))
indexer = self.index.get_indexer(target, method='pad')
expected = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4], dtype=np.intp)
tm.assert_numpy_array_equal(indexer, expected)
target = Int64Index(np.arange(10))
indexer = self.index.get_indexer(target, method='backfill')
expected = np.array([0, 1, 1, 2, 2, 3, 3, 4, 4, 5], dtype=np.intp)
tm.assert_numpy_array_equal(indexer, expected)
def test_intersection(self):
other = Index([1, 2, 3, 4, 5])
result = self.index.intersection(other)
expected = Index(np.sort(np.intersect1d(self.index.values,
other.values)))
tm.assert_index_equal(result, expected)
result = other.intersection(self.index)
expected = Index(np.sort(np.asarray(np.intersect1d(self.index.values,
other.values))))
tm.assert_index_equal(result, expected)
def test_join_inner(self):
other = Int64Index([7, 12, 25, 1, 2, 5])
other_mono = Int64Index([1, 2, 5, 7, 12, 25])
# not monotonic
res, lidx, ridx = self.index.join(other, how='inner',
return_indexers=True)
# no guarantee of sortedness, so sort for comparison purposes
ind = res.argsort()
res = res.take(ind)
lidx = lidx.take(ind)
ridx = ridx.take(ind)
eres = Int64Index([2, 12])
elidx = np.array([1, 6], dtype=np.intp)
eridx = np.array([4, 1], dtype=np.intp)
assert isinstance(res, Int64Index)
tm.assert_index_equal(res, eres)
tm.assert_numpy_array_equal(lidx, elidx)
tm.assert_numpy_array_equal(ridx, eridx)
# monotonic
res, lidx, ridx = self.index.join(other_mono, how='inner',
return_indexers=True)
res2 = self.index.intersection(other_mono)
tm.assert_index_equal(res, res2)
elidx = np.array([1, 6], dtype=np.intp)
eridx = np.array([1, 4], dtype=np.intp)
assert isinstance(res, Int64Index)
tm.assert_index_equal(res, eres)
tm.assert_numpy_array_equal(lidx, elidx)
tm.assert_numpy_array_equal(ridx, eridx)
def test_join_left(self):
other = Int64Index([7, 12, 25, 1, 2, 5])
other_mono = Int64Index([1, 2, 5, 7, 12, 25])
# not monotonic
res, lidx, ridx = self.index.join(other, how='left',
return_indexers=True)
eres = self.index
eridx = np.array([-1, 4, -1, -1, -1, -1, 1, -1, -1, -1],
dtype=np.intp)
assert isinstance(res, Int64Index)
tm.assert_index_equal(res, eres)
assert lidx is None
tm.assert_numpy_array_equal(ridx, eridx)
# monotonic
res, lidx, ridx = self.index.join(other_mono, how='left',
return_indexers=True)
eridx = np.array([-1, 1, -1, -1, -1, -1, 4, -1, -1, -1],
dtype=np.intp)
assert isinstance(res, Int64Index)
tm.assert_index_equal(res, eres)
assert lidx is None
tm.assert_numpy_array_equal(ridx, eridx)
# non-unique
idx = Index([1, 1, 2, 5])
idx2 = Index([1, 2, 5, 7, 9])
res, lidx, ridx = idx2.join(idx, how='left', return_indexers=True)
eres = Index([1, 1, 2, 5, 7, 9]) # 1 is in idx2, so it should be x2
eridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.intp)
elidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.intp)
tm.assert_index_equal(res, eres)
tm.assert_numpy_array_equal(lidx, elidx)
tm.assert_numpy_array_equal(ridx, eridx)
def test_join_right(self):
other = Int64Index([7, 12, 25, 1, 2, 5])
other_mono = Int64Index([1, 2, 5, 7, 12, 25])
# not monotonic
res, lidx, ridx = self.index.join(other, how='right',
return_indexers=True)
eres = other
elidx = np.array([-1, 6, -1, -1, 1, -1], dtype=np.intp)
assert isinstance(other, Int64Index)
tm.assert_index_equal(res, eres)
tm.assert_numpy_array_equal(lidx, elidx)
assert ridx is None
# monotonic
res, lidx, ridx = self.index.join(other_mono, how='right',
return_indexers=True)
eres = other_mono
elidx = np.array([-1, 1, -1, -1, 6, -1], dtype=np.intp)
assert isinstance(other, Int64Index)
tm.assert_index_equal(res, eres)
tm.assert_numpy_array_equal(lidx, elidx)
assert ridx is None
# non-unique
idx = Index([1, 1, 2, 5])
idx2 = Index([1, 2, 5, 7, 9])
res, lidx, ridx = idx.join(idx2, how='right', return_indexers=True)
eres = Index([1, 1, 2, 5, 7, 9]) # 1 is in idx2, so it should be x2
elidx = np.array([0, 1, 2, 3, -1, -1], dtype=np.intp)
eridx = np.array([0, 0, 1, 2, 3, 4], dtype=np.intp)
tm.assert_index_equal(res, eres)
tm.assert_numpy_array_equal(lidx, elidx)
tm.assert_numpy_array_equal(ridx, eridx)
def test_join_non_int_index(self):
other = Index([3, 6, 7, 8, 10], dtype=object)
outer = self.index.join(other, how='outer')
outer2 = other.join(self.index, how='outer')
expected = Index([0, 2, 3, 4, 6, 7, 8, 10, 12, 14, 16, 18])
tm.assert_index_equal(outer, outer2)
tm.assert_index_equal(outer, expected)
inner = self.index.join(other, how='inner')
inner2 = other.join(self.index, how='inner')
expected = Index([6, 8, 10])
tm.assert_index_equal(inner, inner2)
tm.assert_index_equal(inner, expected)
left = self.index.join(other, how='left')
tm.assert_index_equal(left, self.index.astype(object))
left2 = other.join(self.index, how='left')
tm.assert_index_equal(left2, other)
right = self.index.join(other, how='right')
tm.assert_index_equal(right, other)
right2 = other.join(self.index, how='right')
tm.assert_index_equal(right2, self.index.astype(object))
def test_join_outer(self):
other = Int64Index([7, 12, 25, 1, 2, 5])
other_mono = Int64Index([1, 2, 5, 7, 12, 25])
# not monotonic
# guarantee of sortedness
res, lidx, ridx = self.index.join(other, how='outer',
return_indexers=True)
noidx_res = self.index.join(other, how='outer')
tm.assert_index_equal(res, noidx_res)
eres = Int64Index([0, 1, 2, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 25])
elidx = np.array([0, -1, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, 9, -1],
dtype=np.intp)
eridx = np.array([-1, 3, 4, -1, 5, -1, 0, -1, -1, 1, -1, -1, -1, 2],
dtype=np.intp)
assert isinstance(res, Int64Index)
tm.assert_index_equal(res, eres)
tm.assert_numpy_array_equal(lidx, elidx)
tm.assert_numpy_array_equal(ridx, eridx)
# monotonic
res, lidx, ridx = self.index.join(other_mono, how='outer',
return_indexers=True)
noidx_res = self.index.join(other_mono, how='outer')
tm.assert_index_equal(res, noidx_res)
elidx = np.array([0, -1, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, 9, -1],
dtype=np.intp)
eridx = np.array([-1, 0, 1, -1, 2, -1, 3, -1, -1, 4, -1, -1, -1, 5],
dtype=np.intp)
assert isinstance(res, Int64Index)
tm.assert_index_equal(res, eres)
tm.assert_numpy_array_equal(lidx, elidx)
tm.assert_numpy_array_equal(ridx, eridx)
class TestUInt64Index(NumericInt):
_dtype = 'uint64'
_holder = UInt64Index
def setup_method(self, method):
vals = [2**63, 2**63 + 10, 2**63 + 15, 2**63 + 20, 2**63 + 25]
self.indices = dict(index=UInt64Index(vals),
index_dec=UInt64Index(reversed(vals)))
self.setup_indices()
def create_index(self):
return UInt64Index(np.arange(5, dtype='uint64'))
def test_constructor(self):
idx = UInt64Index([1, 2, 3])
res = Index([1, 2, 3], dtype=np.uint64)
tm.assert_index_equal(res, idx)
idx = UInt64Index([1, 2**63])
res = Index([1, 2**63], dtype=np.uint64)
tm.assert_index_equal(res, idx)
idx = UInt64Index([1, 2**63])
res = Index([1, 2**63])
tm.assert_index_equal(res, idx)
idx = Index([-1, 2**63], dtype=object)
res = Index(np.array([-1, 2**63], dtype=object))
tm.assert_index_equal(res, idx)
def test_get_indexer(self):
target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63)
indexer = self.index.get_indexer(target)
expected = np.array([0, -1, 1, 2, 3, 4,
-1, -1, -1, -1], dtype=np.intp)
tm.assert_numpy_array_equal(indexer, expected)
target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63)
indexer = self.index.get_indexer(target, method='pad')
expected = np.array([0, 0, 1, 2, 3, 4,
4, 4, 4, 4], dtype=np.intp)
tm.assert_numpy_array_equal(indexer, expected)
target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63)
indexer = self.index.get_indexer(target, method='backfill')
expected = np.array([0, 1, 1, 2, 3, 4,
-1, -1, -1, -1], dtype=np.intp)
tm.assert_numpy_array_equal(indexer, expected)
def test_intersection(self):
other = Index([2**63, 2**63 + 5, 2**63 + 10, 2**63 + 15, 2**63 + 20])
result = self.index.intersection(other)
expected = Index(np.sort(np.intersect1d(self.index.values,
other.values)))
tm.assert_index_equal(result, expected)
result = other.intersection(self.index)
expected = Index(np.sort(np.asarray(np.intersect1d(self.index.values,
other.values))))
tm.assert_index_equal(result, expected)
def test_join_inner(self):
other = UInt64Index(2**63 + np.array(
[7, 12, 25, 1, 2, 10], dtype='uint64'))
other_mono = UInt64Index(2**63 + np.array(
[1, 2, 7, 10, 12, 25], dtype='uint64'))
# not monotonic
res, lidx, ridx = self.index.join(other, how='inner',
return_indexers=True)
# no guarantee of sortedness, so sort for comparison purposes
ind = res.argsort()
res = res.take(ind)
lidx = lidx.take(ind)
ridx = ridx.take(ind)
eres = UInt64Index(2**63 + np.array([10, 25], dtype='uint64'))
elidx = np.array([1, 4], dtype=np.intp)
eridx = np.array([5, 2], dtype=np.intp)
assert isinstance(res, UInt64Index)
tm.assert_index_equal(res, eres)
tm.assert_numpy_array_equal(lidx, elidx)
tm.assert_numpy_array_equal(ridx, eridx)
# monotonic
res, lidx, ridx = self.index.join(other_mono, how='inner',
return_indexers=True)
res2 = self.index.intersection(other_mono)
tm.assert_index_equal(res, res2)
elidx = np.array([1, 4], dtype=np.intp)
eridx = np.array([3, 5], dtype=np.intp)
assert isinstance(res, UInt64Index)
tm.assert_index_equal(res, eres)
tm.assert_numpy_array_equal(lidx, elidx)
tm.assert_numpy_array_equal(ridx, eridx)
def test_join_left(self):
other = UInt64Index(2**63 + np.array(
[7, 12, 25, 1, 2, 10], dtype='uint64'))
other_mono = UInt64Index(2**63 + np.array(
[1, 2, 7, 10, 12, 25], dtype='uint64'))
# not monotonic
res, lidx, ridx = self.index.join(other, how='left',
return_indexers=True)
eres = self.index
eridx = np.array([-1, 5, -1, -1, 2], dtype=np.intp)
assert isinstance(res, UInt64Index)
tm.assert_index_equal(res, eres)
assert lidx is None
tm.assert_numpy_array_equal(ridx, eridx)
# monotonic
res, lidx, ridx = self.index.join(other_mono, how='left',
return_indexers=True)
eridx = np.array([-1, 3, -1, -1, 5], dtype=np.intp)
assert isinstance(res, UInt64Index)
tm.assert_index_equal(res, eres)
assert lidx is None
tm.assert_numpy_array_equal(ridx, eridx)
# non-unique
idx = UInt64Index(2**63 + np.array([1, 1, 2, 5], dtype='uint64'))
idx2 = UInt64Index(2**63 + np.array([1, 2, 5, 7, 9], dtype='uint64'))
res, lidx, ridx = idx2.join(idx, how='left', return_indexers=True)
# 1 is in idx2, so it should be x2
eres = UInt64Index(2**63 + np.array(
[1, 1, 2, 5, 7, 9], dtype='uint64'))
eridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.intp)
elidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.intp)
tm.assert_index_equal(res, eres)
tm.assert_numpy_array_equal(lidx, elidx)
tm.assert_numpy_array_equal(ridx, eridx)
def test_join_right(self):
other = UInt64Index(2**63 + np.array(
[7, 12, 25, 1, 2, 10], dtype='uint64'))
other_mono = UInt64Index(2**63 + np.array(
[1, 2, 7, 10, 12, 25], dtype='uint64'))
# not monotonic
res, lidx, ridx = self.index.join(other, how='right',
return_indexers=True)
eres = other
elidx = np.array([-1, -1, 4, -1, -1, 1], dtype=np.intp)
tm.assert_numpy_array_equal(lidx, elidx)
assert isinstance(other, UInt64Index)
tm.assert_index_equal(res, eres)
assert ridx is None
# monotonic
res, lidx, ridx = self.index.join(other_mono, how='right',
return_indexers=True)
eres = other_mono