forked from mabitbol/sd_foregrounds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
firas_signals.py
45 lines (37 loc) · 1.48 KB
/
firas_signals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
from astropy.io import fits
from numpy import log10
from scipy import interpolate
# constants (MKS units, except electron rest mass)
TCMB = 2.725 # Kelvin
hplanck = 6.626068e-34 # MKS
kboltz = 1.3806503e-23 # MKS
clight = 299792458.0 # MKS
m_elec = 510.999 # keV!
jy = 1.e26
def blackbody(nu, T=TCMB):
X = hplanck * nu / (kboltz * T)
return jy * 2.0 * hplanck * (nu * nu * nu) / (clight ** 2) * (1.0 / (np.exp(X) - 1.0))
def thermal_dust_rad(nu, Ad=1.36e6, Bd=1.53, Td=21.):
X = hplanck * nu / (kboltz * Td)
return Ad * X**Bd * X**3. / (np.exp(X) - 1.0)
def DeltaI_mu(freqs, mu_amp=2.e-8):
X = hplanck*freqs/(kboltz*TCMB)
return jy * mu_amp * (X / 2.1923 - 1.0)/X * X**4.0 * np.exp(X)/(np.exp(X) - 1.0)**2.0 * 2.0*(kboltz*TCMB)**3.0 / (hplanck*clight)**2.0
def DeltaI_y(freqs, y_amp=1.77e-6):
X = hplanck*freqs/(kboltz*TCMB)
return jy * y_amp * (X / np.tanh(X/2.0) - 4.0) * X**4.0 * np.exp(X)/(np.exp(X) - 1.0)**2.0 * 2.0*(kboltz*TCMB)**3.0 / (hplanck*clight)**2.0
def firas():
x = np.loadtxt('data/firas_monopole_spec_v1.txt')
ffs = x[:, 0] + 0.
onesigmas = x[:, 3] * 1000 #Jy/sr
ffs *= clight * 100. #Hz
return ffs, onesigmas
def firas2():
z = np.loadtxt('templates/firassensitivity.txt')
firasfreqs = z[0]*1.e9
firasnoise = z[1]
return firasfreqs, firasnoise
def newmu(nu, mu=-1.e-5):
X = hplanck*nu/(kboltz*TCMB)
return -2. * jy * hplanck * nu**3. / clight * np.exp(X+mu) / (np.exp(X+mu) - 1.)**2