Skip to content

Bᴛᴏʀ2MLIR: A Format and Toolchain for Hardware Verification

Notifications You must be signed in to change notification settings

jetafese/btor2mlir

 
 

Repository files navigation

Bᴛᴏʀ2ᴍʟɪʀ: A Format and Toolchain for Hardware Verification

os os Open In Colab

Results

Detailed analysis of run-times is available in an accompanying Jupyter Notebook in Google Collab. We also contribute translations of the 2019/20 Hardware Model Checking Competion benchmarks to our Btor Dialect, LLVM-IR and SMT-LIB in hwmcc20-mlir. The image below shows the different verification strategies employed.

strategies-img

Demo

Consider a simple counter that ensures we do not reach 15, represented in Bᴛᴏʀ2 below:

1 sort bitvec 4
2 zero 1
3 state 1 out
4 init 1 3 2
5 one 1
6 add 1 3 5
7 next 1 3 6
8 ones 1
9 sort bitvec 1
10 eq 9 3 8
11 bad 10

Using the command build/bin/btor2mlir-translate --import-btor counter.btor2 > counter.mlir, where counter.btor2 is the file shown above, we get the equivalent representation of our circuit in the BTOR Dialect of MLIR below (counter.mlir):

module {
  func @main() {
    %0 = btor.constant 0 : i4 !btor.bv<4>
    br ^bb1(%0 : !btor.bv<4>)
  ^bb1(%1: !btor.bv<4>):  // 2 preds: ^bb0, ^bb1
    %2 = btor.constant 1 : i4 !btor.bv<4>
    %3 = btor.add %1, %2 : !btor.bv<4>
    %4 = btor.constant -1 : i4 !btor.bv<4>
    %5 = btor.cmp eq, %1, %4 : !btor.bv<4>
    btor.assert_not(%5), 0 : i64 !btor.bv<1>
    br ^bb1(%3 : !btor.bv<4>)
  }
}

Then, using the command build/bin/btor2mlir-opt --convert-std-to-llvm --convert-btor-to-llvm counter.mlir > counter.mlir.opt we get the file below which represents the original circuit in the LLVM Dialect of MLIR.

module attributes {llvm.data_layout = ""} {
  llvm.func @__VERIFIER_error()
  llvm.func @__VERIFIER_assert(i1, i64)
  llvm.func @main() {
    %0 = llvm.mlir.constant(0 : i4) : i4
    llvm.br ^bb1(%0 : i4)
  ^bb1(%1: i4):  // 2 preds: ^bb0, ^bb2
    %2 = llvm.mlir.constant(1 : i4) : i4
    %3 = llvm.add %1, %2  : i4
    %4 = llvm.mlir.constant(-1 : i4) : i4
    %5 = llvm.icmp "eq" %1, %4 : i4
    %6 = llvm.mlir.constant(true) : i1
    %7 = llvm.xor %5, %6  : i1
    llvm.cond_br %7, ^bb2, ^bb3
  ^bb2:  // pred: ^bb1
    llvm.br ^bb1(%3 : i4)
  ^bb3:  // pred: ^bb1
    %8 = llvm.mlir.constant(0 : i64) : i64
    llvm.call @__VERIFIER_assert(%7, %8) : (i1, i64) -> ()
    llvm.call @__VERIFIER_error() : () -> ()
    llvm.unreachable
  }
}

Finally, using the command build/bin/btor2mlir-translate --mlir-to-llvmir counter.mlir.opt > counter.ll we generate the circuit as an LLVM-IR program below (counter.ll):

declare void @__VERIFIER_error()
declare void @__VERIFIER_assert(i1, i64)
define void @main() !dbg !3 {
  br label %1, !dbg !7
1:                                                ; preds = %6, %0
  %2 = phi i4 [ %3, %6 ], [ 0, %0 ]
  %3 = add i4 %2, 1, !dbg !9
  %4 = icmp eq i4 %2, -1, !dbg !10
  %5 = xor i1 %4, true, !dbg !11
  br i1 %5, label %6, label %7, !dbg !12
6:                                                ; preds = %1
  br label %1, !dbg !13
7:                                                ; preds = %1
  call void @__VERIFIER_assert(i1 %5, i64 0), !dbg !14
  call void @__VERIFIER_error(), !dbg !15
  unreachable, !dbg !16
}

If you have SeaHorn installed locally (a distribution is included in the Docker), we can show that the bad state in the original circuit is reached using SeaHorn's Bounded Model Checking engine. This is indicated by the output sat when we run the command: sea bpf counter.ll

Witness Generation

Run the shell script ./get_cex_seahorn.sh $btor2_file to:

a) extract a counter example from SeaHorn
b) generate a Btor2 Witness
c) simulate the witness using btorsim

Docker

Dockerfile: docker/btor2mlir.Dockerfile.

From the root folder use the following commands to:

Build: docker build -t btor2mlir . --file docker/btor2mlir.Dockerfile

Run: docker run -it btor2mlir

Building Locally

The instructions assume that cmake, clang/clang++ and ninja are installed on your machine, LLVM_PROJECT=/ag/llvm-gh-mlir, and that lit command is installed and is globally available

Building LLVM

Commands to configure and compile LLVM

$ mkdir debug && cd debug 
$ cmake -G Ninja ../llvm \
    -DCMAKE_C_COMPILER=clang-14 -DCMAKE_CXX_COMPILER=clang++-14 \
    -DLLVM_ENABLE_PROJECTS=mlir -DLLVM_BUILD_EXAMPLES=ON  \ 
    -DCMAKE_BUILD_TYPE=Debug \ # change to RelWithDebInfo for release build
    -DLLVM_TARGETS_TO_BUILD="X86"  \
    -DLLVM_ENABLE_LLD=ON  \ # only on Linux	
    -DLLVM_INSTALL_UTILS=ON \ # optional to install FileCheck and lit
    -DCMAKE_INSTALL_PREFIX=$(pwd)/run  # install location in `run` under build
$ ninja
$ ninja install

The above installs a debug version of llvm under LLVM_PROJECT/debug/run, where LLVM_PROJECT is the root of llvm project on your machine.

Building

To compile this project

$ mkdir debug && cd debug 
$ cmake -G Ninja .. \
    -DMLIR_DIR=/ag/llvm-gh-mlir/debug/run/lib/cmake/mlir \
    -DLLVM_DIR=/ag/llvm-gh-mlir/debug/run/lib/cmake/llvm \
    -DLLVM_EXTERNAL_LIT=$(which lit) \
    -DLLVM_ENABLE_LLD=ON \
    -DCMAKE_INSTALL_PREFIX=$(pwd)/run \

Contributors

Arie Gurfinkel arie.gurfinkel@uwaterloo.ca
Joseph Tafese jetafese@uwaterloo.ca

About

Bᴛᴏʀ2MLIR: A Format and Toolchain for Hardware Verification

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 74.4%
  • C 15.0%
  • LLVM 3.5%
  • CMake 2.8%
  • Python 1.8%
  • MLIR 1.1%
  • Other 1.4%