-
Notifications
You must be signed in to change notification settings - Fork 0
/
baseline.py
98 lines (85 loc) · 3.82 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import pytorch_lightning as pl
from pytorch_lightning import loggers as pl_loggers
from torch.utils.data import DataLoader
import networks.resnet as resnet
from networks.finetuning import FinetunedClassifier
from data.iNaturalist_dataset import iNaturalistDataset
import click
@click.command()
@click.option('--train-metadata-file-path', type=click.Path(), required=False,
help='Path of training JSON metadata file')
@click.option('--validation-metadata-file-path', type=click.Path(), required=False,
help='Path of validation JSON metadata file')
@click.option('--test-metadata-file-path', type=click.Path(), required=False,
help='Path of validation JSON metadata file')
@click.option('--batch-size', type=click.INT, default=192, help="Batch size")
@click.option('--gpus', type=click.INT, default=1, help="Number of GPUs to use")
@click.option('--image-size', type=click.INT, default=224, help="Image size (one side)")
@click.option('--epochs', type=click.INT, default=100, help="Maximum number of epochs to train for")
@click.option('--encoder', type=click.Choice(
["reset18", "resnet34", "resnet50", "resnet101", "resnet152"]), default="resnet50", help="Encoder to use")
@click.option('--classifier-weights', type=click.Path(), help="Classifier checkpoint to use")
def main(
train_metadata_file_path,
validation_metadata_file_path,
test_metadata_file_path,
batch_size,
gpus,
image_size,
epochs,
encoder,
classifier_weights,
):
train_loaders, val_loaders = None, None
pl.seed_everything(42)
device = torch.device('cuda:0') if gpus > 0 else torch.device('cpu')
callbacks = []
tb_logger = pl_loggers.TensorBoardLogger("logs/")
if train_metadata_file_path:
train_dataset = iNaturalistDataset(train_metadata_file_path, (image_size, image_size))
train_loaders = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=16)
val_loaders = None
if validation_metadata_file_path:
val_dataset = iNaturalistDataset(validation_metadata_file_path, (image_size, image_size))
val_loaders = DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=16)
callbacks.append(pl.callbacks.early_stopping.EarlyStopping(monitor="val_loss"))
callbacks.append(pl.callbacks.ModelCheckpoint(monitor="val_loss"))
else:
callbacks.append(pl.callbacks.early_stopping.EarlyStopping(monitor="train_loss"))
callbacks.append(pl.callbacks.ModelCheckpoint(monitor="train_loss"))
cls = resnet.ResNetLightningWrapper(getattr(resnet, encoder)(pretrained=False, num_classes=len(train_dataset.categories)))
elif classifier_weights:
cls = resnet.ResNetLightningWrapper.load_from_checkpoint(classifier_weights)
else:
raise ValueError("Either provide a trained classifier or data to train on!")
cls.to(device)
trainer = pl.Trainer(
logger=tb_logger,
gpus=gpus,
precision=16 if gpus > 0 else 32,
max_epochs=epochs,
callbacks=callbacks
)
if train_metadata_file_path:
trainer.fit(cls, train_dataloaders=train_loaders, val_dataloaders=val_loaders)
if test_metadata_file_path:
test_dataset = iNaturalistDataset(test_metadata_file_path, (image_size, image_size))
test_loaders = DataLoader(
test_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=16)
trainer.test(cls, dataloaders=test_loaders)
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
main()
# See PyCharm help at https://www.jetbrains.com/help/pycharm/